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1. In an acute triangle ABC, points D, E, F are located on the sides BC, CA, AB respectively
such that

CD

CE
=

CA

CB
,

AE

AF
=

AB

AC
,

BF

BD
=

BC

BA
.

Prove that AD, BE, CF are the altitudes of ABC.

Solution: Put CD = x. Then with usual notations we get

CE =
CD · CB

CA
=

ax

b
.

Since AE = AC − CE = b − CE, we obtain

AE =
b2 − ax

b
, AF =

AE · AC

AB
=

b2 − ax

c
.
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This in turn gives

BF = AB − AF =
c2 − b2 + ax

c
.

Finally we obtain

BD =
c2 − b2 + ax

a
.

Using BD = a − x, we get

x =
a2 − c2 + b2

2a
.

However, if L is the foot of perpendicular from A on to BC then, using Pythagoras theorem
in triangles ALB and ALC we get

b2 − LC2 = c2 − (a − LC)2

which reduces to LC = (a2− c2 + b2)/2a. We conclude that LC = DC proving L = D. Or, we
can also infer that x = b cosC from cosine rule in triangle ABC. This implies that CD = CL,
since CL = b cosC from right triangle ALC. Thus AD is altitude on to BC. Similar proof
works for the remaining altitudes.



Alternately, we see that CD ·CB = CE ·CA, so that ABDE is a cyclic quadrilateral. Similarly
we infer that BCEF and CAFD are also cyclic quadrilaterals. (See Fig. 2.) Thus ∠AEF =
∠B = ∠CED. Moreover ∠BED = ∠DAF = ∠DCF = ∠BCF = ∠BEF . It follows that
∠BEA = ∠BEC and hence each is a right angle thus proving that BE is an altitude. Similarly
we prove that CF and AD are altitudes. (Note that the concurrence of the lines AD, BE,
CF are not required.)

2. Solve the following equation for real x:

(x2 + x − 2)3 + (2x2 − x − 1)3 = 27(x2 − 1)3.

Solution: By setting u = x2 +x−2 and v = 2x2−x−1, we observe that the equation reduces
to u3 + v3 = (u + v)3. Since (u + v)3 = u3 + v3 + 3uv(u + v), it follows that uv(u + v) = 0.
Hence u = 0 or v = 0 or u + v = 0. Thus we obtain x2 + x − 2 = 0 or 2x2 − x − 1 = 0 or
x2 − 1 = 0. Solving each of them we get x = 1,−2 or x = 1,−1/2 or x = 1,−1. Thus x = 1 is
a root of multiplicity 3 and the other roots are −1,−2,−1/2.

(Alternately, it can be seen that x − 1 is a factor of x2 + x − 2, 2x2 − x − 1 and x2 − 1. Thus
we can write the equation in the form

(x − 1)3(x + 2)3 + (x − 1)3(2x + 1)3 = 27(x − 1)3(x + 1)3.

Thus it is sufficient to solve the cubic equation

(x + 2)3 + (2x + 1)3 = 27(x + 1)3.

This can be solved as earlier or expanding every thing and simplifying the relation.)

3. Let a, b, c be positive integers such that a divides b2, b divides c2 and c divides a2. Prove that
abc divides (a + b + c)7.

Solution: Consider the expansion of (a + b + c)7. We show that each term here is divisible
by abc. It contains terms of the form rklmakblcm, where rklm is a constant( some binomial
coefficient) and k, l, m are nonnegative integers such that k+ l+m = 7. If k ≥ 1, l ≥ 1, m ≥ 1,
then abc divides akblcm. Hence we have to consider terms in which one or two of k, l, m are
zero. Suppose for example k = l = 0 and consider c7. Since b divides c2 and a divides c4,
it follows that abc divides c7. A similar argument gives the result for a7 or b7. Consider the
case in which two indices are nonzero, say for example, bc6. Since a divides c4, here again abc
divides bc6. If we take b2c5, then also using a divides c4 we obtain the result. For b3c4, we use
the fact that a divides b2. Similar argument works for b4c3, b5c2 and b6c. Thus each of the
terms in the expansion of (a + b + c)7 is divisible by abc.

4. Suppose the integers 1, 2, 3, . . . , 10 are split into two disjoint collections a1, a2, a3, a4, a5 and
b1, b2, b3, b4, b5 such that

a1 < a2 < a3 < a4 < a5,

b1 > b2 > b3 > b4 > b5.

(i) Show that the larger number in any pair {aj , bj}, 1 ≤ j ≤ 5, is at least 6.

(ii) Show that |a1−b1|+ |a2−b2|+ |a3−b3|+ |a4−b4|+ |a5−b5| = 25 for every such partition.
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Solution:

(i) Fix any pair {aj , bj}. We have a1 < a2 < · · · < aj−1 < aj and bj > bj+1 > · · · > b5. Thus
there are j − 1 numbers smaller than aj and 5 − j numbers smaller than bj . Together
they account for j − 1 + 5 − j = 4 distinct numbers smaller than aj as well as bj . Hence
the larger of aj and bj is at least 6.

(ii) The first part shows that the larger numbers in the pairs {aj , bj}, 1 ≤ j ≤ 5, are
6, 7, 8, 9, 10 and the smaller numbers are1, 2, 3, 4, 5. This implies that

|a1 − b1| + |a2 − b2| + |a3 − b3| + |a4 − b4| + |a5 − b5|

= 10 + 9 + 8 + 7 + 6 − (1 + 2 + 3 + 4 + 5) = 25.

5. The circumference of a circle is divided into eight arcs by a convex quadrilateral ABCD, with
four arcs lying inside the quadrilateral and the remaining four lying outside it. The lengths of
the arcs lying inside the quadrilateral are denoted by p, q, r, s in counter-clockwise direction
starting from some arc. Suppose p + r = q + s. Prove that ABCD is a cyclic quadrilateral.

Solution: Let the lengths of the arcs XY , UV , EF , GH be respectively p, q, r, s. We also
the following notations: (See figure)
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∠XAY = α1, ∠AY P = α2, ∠Y PX = α3, ∠PXA = α4, ∠UBY = β1, ∠BV P = β2, ∠V PU =
β3, ∠PUB = β4, ∠ECF = γ1, ∠CFP = γ2, ∠FPE = γ3, ∠PEC = γ4, ∠GDH = δ1,
∠DHP = δ2, ∠HPG = δ3, ∠PGD = δ4.

We observe that ∑
αj =

∑
βj =

∑
γj =

∑
δj = 2π.

It follows that ∑
(αj + γj) =

∑
(βj + δj).

On the other hand, we also have α2 = β4 since PY = PU . Similarly we have other relations:
β2 = γ4, γ2 = δ4 and δ2 = α4. It follows that

α1 + α3 + γ1 + γ3 = β1 + β3 + δ1 + δ3.
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But p + r = q + s implies that α3 + γ3 = β3 + δ3. We thus obtain

α1 + γ1 = β1 + δ1.

Since α1 + γ1 + β1 + δ1 = 360◦, it follows that ABCD is a cyclic quadrilateral.

6. For any natural number n > 1, prove the inequality:

1

2
<

1

n2 + 1
+

2

n2 + 2
+

3

n2 + 3
+ · · · +

n

n2 + n
<

1

2
+

1

2n
.

Solution: We have n2 < n2 + 1 < n2 + 2 < n2 + 3 · · · < n2 + n. Hence we see that

1

n2 + 1
+

2

n2 + 2
+ · · · +

n

n2 + n
>

1

n2 + n
+

2

n2 + n
+ · · · +

n

n2 + n

=
1

n2 + n
(1 + 2 + 3 + · · ·n) =

1

2
.

Similarly, we see that

1

n2 + 1
+

2

n2 + 2
+ · · · +

n

n2 + n
<

1

n2
+

2

n2
+ · · · +

n

n2

=
1

n2
(1 + 2 + 3 + · · ·n) =

1

2
+

1

2n
.

7. Find all integers a, b, c, d satisfying the following relations:

(i) 1 ≤ a ≤ b ≤ c ≤ d;

(ii) ab + cd = a + b + c + d + 3.

Solution: We may write (ii) in the form

ab − a − b + 1 + cd − c − d + 1 = 5.

Thus we obtain the equation (a − 1)(b − 1) + (c − 1)(d − 1) = 5. If a − 1 ≥ 2, then (i) shows
that b − 1 ≥ 2, c − 1 ≥ 2 and d − 1 ≥ 2 so that (a − 1)(b − 1) + (c − 1)(d − 1) ≥ 8. It follows
that a − 1 = 0 or 1.

If a − 1 = 0, then the contribution from (a − 1)(b − 1) to the sum is zero for any choice of b.
But then (c − 1)(d − 1) = 5 implies that c − 1 = 1 and d − 1 = 5 by (i). Again (i) shows that
b − 1 = 0 or 1 since b ≤ c. Taking b − 1 = 0, c − 1 = 1 and d − 1 = 5 we get the solution
(a, b, c, d) = (1, 1, 2, 6). Similarly, b−1 = 1, c−1 = 1 and d−1 = 5 gives (a, b, c, d) = (1, 2, 2, 6).

In the other case a − 1 = 1, we see that b − 1 = 2 is not possible for then c − 1 ≥ 2 and
d − 1 ≥ 2. Thus b − 1 = 1 and this gives (c − 1)(d − 1) = 4. It follows that c − 1 = 1,
d − 1 = 4 or c − 1 = 2, d − 1 = 2. Considering each of these, we get two more solutions:
(a, b, c, d) = (2, 2, 2, 5), (2, 2, 3, 3).

It is easy to verify all these four quadruples are indeed solutions to our problem.
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