## Regional Mathematical Olympiad-2000 Problems and Solutions

1. Let AC be a line segment in the plane and B a point between A and C. Construct isosceles triangles PAB and QBC on one side of the segment AC such that  $\angle APB = \angle BQC = 120^{\circ}$  and an isosceles triangle RAC on the otherside of AC such that  $\angle ARC = 120^{\circ}$ . Show that PQR is an equilateral triangle.

Solution: We give here 2 different solutions.

1. Drop perpendiculars from P and Q to AC and extend them to meet AR, RC in K, L respectively. Join KB, PB, QB, LB, KL. (Fig.1.)



Observe that K, B, Q are collinear and so are P, B, L. (This is because  $\angle QBC = \angle PBA = \angle KBA$  and similarly  $\angle PBA = \angle CBL$ .) By symmetry we see that  $\angle KPQ = \angle PKL$  and  $\angle KPB = \angle PKB$ . It follows that  $\angle LPQ = \angle LKQ$  and hence K, L, Q, P are concyclic. We also note that  $\angle KPL + \angle KRL = 60^{\circ} + 120^{\circ} = 180^{\circ}$ . This implies that P, K, R, L are concyclic. We conclude that P, K, R, L, Q are concyclic. This gives

$$\angle PRQ = \angle PKQ = 60^{\circ}, \quad \angle RPQ = \angle RKQ = \angle RAP = 60^{\circ}$$

- 2. Produce AP and CQ to meet at K. Observe that AKCR is a rhombus and BQKP is a parallelogram.(See Fig.2.) Put AP = x, CQ = y. Then PK = BQ = y, KQ = PB = x and AR = RC = CK = KA = x + y. Using cosine rule in triangle PKQ, we get  $PQ^2 = x^2 + y^2 2xy \cos 120^\circ = x^2 + y^2 + xy$ . Similarly cosine rule in triangle QCR gives  $QR^2 = y^2 + (x + y)^2 2xy \cos 60^\circ = x^2 + y^2 + xy$  and cosine rule in triangle PAR gives  $RP^2 = x^2 + (x + y)^2 2xy \cos 60^\circ = x^2 + y^2 + xy$ . It follows that PQ = QR = RP.
- 2. Solve the equation  $y^3 = x^3 + 8x^2 6x + 8$ , for positive integers x and y.

1

Solution: We have

$$y^{3} - (x+1)^{3} = x^{3} + 8x^{2} - 6x + 8 - (x^{3} + 3x^{2} + 3x + 1) = 5x^{2} - 9x + 7.$$

Consider the quadratic equation  $5x^2 - 9x + 7 = 0$ . The discriminant of this equation is  $D = 9^2 - 4 \times 5 \times 7 = -59 < 0$  and hence the expression  $5x^2 - 9x + 7$  is positive for all real values of x. We conclude that  $(x + 1)^3 < y^3$  and hence x + 1 < y.

On the other hand we have

$$(x+3)^3 - y^3 = x^3 + 9x^2 + 27x + 27 - (x^3 + 8x^2 - 6x + 8) = x^2 + 33x + 19 > 0$$

for all positive x. We conclude that y < x + 3. Thus we must have y = x + 2. Putting this value of y, we get

$$0 = y^3 - (x+2)^3 = x^3 + 8x^2 - 6x + 8 - (x^3 + 6x^2 + 12x + 8) = 2x^2 - 18x.$$

We conclude that x = 0 and y = 2 or x = 9 and y = 11.

3. Suppose  $\langle x_1, x_2, \ldots, x_n, \ldots \rangle$  is a sequence of positive real numbers such that  $x_1 \ge x_2 \ge x_3 \ge \cdots \ge x_n \cdots$ , and for all n

$$\frac{x_1}{1} + \frac{x_4}{2} + \frac{x_9}{3} + \dots + \frac{x_{n^2}}{n} \le 1.$$

Show that for all k the following inequality is satisfied:

$$\frac{x_1}{1} + \frac{x_2}{2} + \frac{x_3}{3} + \dots + \frac{x_k}{k} \le 3.$$

**Solution:** Let k be a natural number and n be the unique integer such that  $(n-1)^2 \le k < n^2$ . Then we see that

$$\sum_{r=1}^{k} \frac{x_r}{r} \leq \left(\frac{x_1}{1} + \frac{x_2}{2} + \frac{x_3}{3}\right) + \left(\frac{x_4}{4} + \frac{x_5}{5} + \dots + \frac{x_8}{8}\right) \\ + \dots + \left(\frac{x_{(n-1)^2}}{(n-1)^2} + \dots + \frac{x_k}{k} + \dots + \frac{x_{n^2-1}}{n^2 - 1}\right) \\ \leq \left(\frac{x_1}{1} + \frac{x_1}{1} + \frac{x_1}{1}\right) + \left(\frac{x_4}{4} + \frac{x_4}{4} + \dots + \frac{x_4}{4}\right) \\ + \dots + \left(\frac{x_{(n-1)^2}}{(n-1)^2} + \dots + \frac{x_{(n-1)^2}}{(n-1)^2}\right) \\ = \frac{3x_1}{1} + \frac{5x_2}{4} + \dots + \frac{(2n-1)x_{(n-1)^2}}{(n-1)^2} \\ = \sum_{r=1}^{n-1} \frac{(2r+1)x_{r^2}}{r^2}$$

 $\mathbf{2}$ 

$$\leq \sum_{r=1}^{n-1} \frac{3r}{r^2} x_{r^2} \\ = 3 \sum_{r=1}^{n-1} \frac{x_{r^2}}{r} \leq 3,$$

where the last inequality follows from the given hypothesis.

4. All the 7-digit numbers containing each of the digits 1, 2, 3, 4, 5, 6, 7 exactly once, and not divisible by 5, are arranged in the increasing order. Find the 2000-th number in this list.

**Solution:** The number of 7-digit numbers with 1 in the left most place and containing each of the digits 1, 2, 3, 4, 5, 6, 7 exactly once is 6! = 720. But 120 of these end in 5 and hence are divisible by 5. Thus the number of 7-digit numbers with 1 in the left most place and containing each of the digits 1, 2, 3, 4, 5, 6, 7 exactly once but not divisible by 5 is 600. Similarly the number of 7-digit numbers with 2 and 3 in the left most place and containing each of the digits 1, 2, 3, 4, 5, 6, 7 exactly once but not divisible by 5 is also 600 each. These account for 1800 numbers. Hence 2000-th number must have 4 in the left most place.

Again the number of such 7-digit numbers beginning with 41,42 and not divisible by 5 is 120 - 24 = 96 each and these account for 192 numbers. This shows that 2000-th number in the list must begin with 43.

The next 8 numbers in the list are: 4312567, 4312576, 4312657, 4312756, 4315267, 4315276, 4315627 and 4315672. Thus 2000-th number in the list is 4315672.

5. The internal bisector of angle A in a triangle ABC with AC > AB, meets the circumcircle  $\Gamma$  of the triangle in D. Join D to the centre O of the circle  $\Gamma$  and suppose DO meets AC in E, possibly when extended. Given that BE is perpendicular to AD, show that AO is parallel to BD.

**Solution:** We consider here the case when ABC is an acute-angled triangle; the cases when  $\angle A$  is obtuse or one of the angles  $\angle B$  and  $\angle C$  is obtuse may be handled similarly.



3

Let M be the point of intersection of DE and BC; let AD intersect BE in N. Since ME is the perpendicular bisector of BC, we have BE = CE. Since AN is the internal bisector of  $\angle A$ , and is perpendicular to BE, it must bisect BE; i.e., BN = NE. This in turn implies that DN bisects  $\angle BDE$ . But  $\angle BDA = \angle BCA = \angle C$ . Thus  $\angle ODA = \angle C$ . Since OD = OA, we get  $\angle OAD = \angle C$ . It follows that  $\angle BDA = \angle C = \angle OAD$ . This implies that OA is parallel to BD.

6. (i) Consider two positive integers a and b which are such that  $a^a b^b$  is divisible by 2000. What is the least possible value of the product ab?

(ii) Consider two positive integers a and b which are such that  $a^{b}b^{a}$  is divisible by 2000. What is the least possible value of the product ab?

**Solution:** We have  $2000 = 2^4 5^3$ .

(i) Since 2000 divides  $a^a b^b$ , it follows that 2 divides *a* or *b* and similarly 5 divides *a* or *b*. In any case 10 divides *ab*. Thus the least possible value of *ab* for which  $2000|a^a b^b$  must be a multiple of 10. Since 2000 divides  $10^{10}1^1$ , we can take a = 10, b = 1 to get the least value of *ab* equal to 10.

(ii) As in (i) we conclude that 10 divides ab. Thus the least value of ab for which  $2000|a^bb^a$  is again a multiple of 10. If ab = 10, then the possibilities are (a, b) = (1, 10), (2, 5), (5, 2), (10, 1). But in all these cases it is easy to verify that 2000 does not divide  $a^bb^a$ . The next multiple of 10 is 20. In this case we can take (a, b) = (4, 5) and verify that 2000 divides  $4^55^4$ . Thus the least value here is 20.

7. Find all real values of a for which the equation  $x^4 - 2ax^2 + x + a^2 - a = 0$  has all its roots real.

**Solution:** Let us consider  $x^4 - 2ax^2 + x + a^2 - a = 0$  as a quadratic equation in a. We see that thee roots are

$$a = x^2 + x$$
,  $a = x^2 - x + 1$ .

Thus we get a factorisation

$$(a - x2 - x)(a - x2 + x - 1) = 0.$$

It follows that  $x^2 + x = a$  or  $x^2 - x + 1 = a$ . Solving these we get

$$x = \frac{-1 \pm \sqrt{1+4a}}{2}$$
, or  $x = \frac{-1 \pm \sqrt{4a-3}}{2}$ .

Thus all the four roots are real if and only if  $a \ge 3/4$ .

4