Solutions to CRMO0O-2008 Problems

1. Let ABC' be an acute-angled triangle; let D, F' be the mid-points of BC', AB respec-
tively. Let the perpendicular from F' to AC and the perpendicular at B to BC' meet
in N. Prove that ND is equal to the circum-radius of ABC. [15]

Solution: Let O be the circum-
centre of ABC. Join OD, ON and
OF. We show that BDON is a
rectangle. It follows that DN = K

BO = R, the circum-radius of

ABC.

Observe that ZNBC = /NKC = F

90°. Hence BCKN is a cyclic N o
quadrilateral. Thus ZKNB =
180° — ZBCA. But ZBOA =
2/BCA and OF bisects ZBOA. B *
Hence /BOF = /BCA. We thus

obtain

/FNB+ /BOF = /KNB + Z/BCK = 180°.

This implies that B,O, F, N are con-cyclic. Hence /BFO = ZBNQO. But observe
that ZBFO = 90° since OF is perpendicular to AB. Thus ZBNO = 90°. Since NB
and OD are perpendicular to BC), it follows that BDON is a rectangle.

Alternate Solution: We can also get the conclusion using trigonometry. Observe
that ZNFB = ZAFK = 90° — ZA; and ZBNF = 180° — 4B since BCKN is a
cyclic quadrilateral. Using the sine-rule in the triangle BF'N,

NB _  BF
sin/NFB sin/BFN’

This reduces to A
NB - C cos

=< - A.
dsmC  Teos

But BD = a/2 = Rsin A. Thus
ND? = NB* + BD? = R
This gives ND = R.

2. Prove that there exist two infinite sequences {an)n>1 and (b,),>1 of positive integers
such that the following conditions hold simultaneously:
(i) 1<a;<ay<azg<---
(ii)
(iii) a, — 1 divides b, — 1, for all n > 1;
)

(iv) aZ —1 divides b2 — 1, for all n > 1.

an < by, < a2, foralln>1;



[19]

Solution: Let us look at the problem of finding two positive integers a, b such that
l1<a<b<a? a—1divides b—1 and a? — 1 divides ¥> — 1. Thus we have

b—1=k(a—1), and b —1=1I(a*-1).
Eliminating b from these equations, we get
(k* —la=k*—2k +1.

Thus it follows that
R —2%+1 . 2Ak—1)
TR T T R
We need a to be an integer. Choose k> —l =2sothata=1+1—k=k*>—k—1 and
b=k(a—1)+1=k —k*>—2k+1. We want a > 1 which is assured if we choose
k > 3. Now a < b is equivalent to (k> — 1)(k — 2) > 0 which again is assured once
k > 3. Tt is easy to see that b < a? is equivalent to k(k® — 3k* + 4) > 0 and this is

also true for all k¥ > 3. Thus we define

an = (n+2?*-(n+2)—1=n*+3n+1,
by = (n+23—n+2)2?-2n+2)+1=n>+5n>+6n+1,

for n > 1. Then we see that
1<a, <b, <b?,

for all n > 1. Moreover
ap,—1=n(n+3), b,—1=n(n+3)(n+2)
and

a2—1=nn+3)(n+1)(n+2), B2—1=nn+3)(n+2)(n+1)(n*+4n+2).

Thus we have a pair of desired sequences (a,) and (by,).

. Suppose a and b are real numbers such that the roots of the cubic equation

ax® — 22 + bx — 1 = 0 are all positive real numbers. Prove that:

i) 0<3ab<1 and (ii) b> V3.
[19]

Solution: Let «, 3, v be the roots of the given equation. We have
1 b 1

a+5+7:_a OJB+B’Y+’)’O{:—, aB’Y:_

a a a

It follows that a, b are positive. We thus obtain

3b 1
—=3(af+py+90) < (a+f+79)° =,



which gives 0 < 3ab < 1. Moreover

b2

5 = (aB + By + )’

_ 2 02 2 2 2 2

= a’f°+ By + v’ + 2aB8v(a+ B+ 7)
2

— a2ﬁ2+ﬁ272+72a2+p.

['hus
62 2 :282 6)2_2 _2:2>1(:6> B _:)2 ’
a? 3 3&2.

This implies that 3(b*> — 2) > b2 or b?> > 3. Hence b > /3, the conclusion follows.

. Find the number of all 6-digit natural numbers such that the sum of their digits is
10 and each of the digits 0,1,2,3 occurs at least once in them. [14]

Solution: We observe that 0 +1 + 2+ 3 = 6. Hence the remaining two digits must
account for for the sum 4. This is possible with 4 =0+4 =143 =2+ 2. Thus we
see that the digits in any such 6-digit number must be from one of the collections:
{0,1,2,3,0,4}, {0,1,2,3,1,3} or {0,1,2,3,2,2}.

Consider the case in which the digits are from the collection {0,1,2,3,0,4}. Here
0 occurs twice and the digits 1,2,3,4 occur once each. But 0 cannot be the first
digit. Hence the first digit must be one of 1,2,3,4. Suppose we fix 1 as the first digit.
Then the number of 6-digit numbers in which the remaining 5 digits are 0,0,2,3,4 is
5!/2! = 60. Same is the case with other digits: 2,3,4. Thus the number of 6-digit
numbers in which the digits 0,1,2,3,0,4 occur is 60 x 4 = 240.

Suppose the digits are from the collection {0,1,2,3,1,3}. The number of 6-digit
numbers beginning with 1 is 5!/2! = 60. The number of those beginning with 2 is
5!/(2!)(2!) = 30 and the number of those beginning with 3 is 5!/2! = 60. Thus the
total number in this case is 60 + 30 + 60 = 150. Alternately, we can also count
it as follows: the number of 6-digit numbers one can obtain from the collection
{0,1,2,3,1,3} with 0 also as a possible first digit is 6!/(2!)(2!) = 180; the number
of 6-digit numbers one can obtain from the collection {0,1,2,3,1,3} in which 0 is
the first digit is 5!/(2!)(2!) = 30. Thus the number of 6-digit numbers formed by the
collection {0,1,2,3,1,3} such that no number has its first digit 0 is 180 — 30 = 150.

Finally look at the collection {0,1,2,3,2,2}. Here the number of of 6-digit numbers
in which 1 is the first digit is 5!/3! = 20; the number of those having 2 as the first
digit is 5!/2! = 60; and the number of those having 3 as the first digit is 5!/3! = 20.
Thus the number of admissible 6-digit numbers here is 20 4+ 60 + 20 = 100. This may
also be obtained using the other method of counting: 6!/3! —5!/3! =120 — 20 = 100.

Finally the total number of 6-digit numbers in which each of the digits 0,1,2,3 appears
at least once is 240 + 150 + 100 = 490.

L1012
. Three nonzero real numbers a, b, ¢ are said to be in harmonic progression if —+— = b
a ¢
Find all three-term harmonic progressions a, b, ¢ of strictly increasing positive integers
in which @ = 20 and b divides c. [17]

Solution: Since 20, b, ¢ are in harmonic progression, we have

1 1 2

20 ¢ b



which reduces to bc + 20b — 40c = 0. This may also be written in the form
(40 — b)(c + 20) = 800.

Thus we must have 20 < b < 40 or, equivalently, 0 < 40 — b < 20. Let us consider
the factorisation of 800 in which one term is less than 20:

(40 — b)(c +20) = 800 = 1 x 800 = 2 x 400 = 4 x 200
=5 x 160 = 8 x 100 = 10 x 80 = 16 x 50.

We thus get the pairs
(b, c) = (39, 780), (38, 380), (36, 180), (35, 140), (32, 80), (30, 60), (24, 30).

Among these 7 pairs, we see that only 5 pairs (39, 780), (38, 380), (36, 180), (35, 140),
(30,60) fulfill the condition of divisibility: b divides ¢. Thus there are 5 triples
satisfying the requirement of the problem.

. Find the number of all integer-sided isosceles obtuse-angled triangles with perimeter
2008. [16]

Solution: Let the sides be x,x,y, where z,y are positive integers. Since we are
looking for obtuse-angled triangles, y > x. Moreover, 2 + y = 2008 shows that y
is even. But y < x + z, by triangle inequality. Thus y < 1004. Thus the possible
triples are (y, z, x) = (1002,503,503), (1000, 504, 504), (998, 505, 505), and so on. The
general form is (y,z,z) = (1004 — 2k,502 + k,502 + k), where k = 1,2,3,...,501.
But the condition that the triangle is obtuse leads to

(1004 — 2k)* > 2(502 + k).

This simplifies to
5022 + k* — 6(502)k > 0.

Solving this quadratic inequality for k£, we see that
k<502(3—2v2), or k>502(3+2v?2).

Since k£ < 501, we can rule out the second possibility. Thus k < 502(3 — 2v/2), which
is approximately 86.1432. We conclude that £ < 86. Thus we get 86 triangles

(y,z,z) = (1004 — 2k,502 + k,502 + k), k=1,2,3,...,86.

The last obtuse triangle in this list is: (832,588,588). (It is easy to check that 8322 —
5882 — 5882 = 736 > 0, where as 830? — 5892 — 5892 = —4942 < 0.)



