Solutions to CRMO0O-2007 Problems

1. Let ABC be an acute-angled triangle; AD be the bisector of ZBAC with D on BC;
and BE be the altitude from B on AC. Show that ZCED > 45°.

Solution:

Draw DL perpendicular to AB; DK per-
pendicular to AC; and DM perpendicu-
lar to BE. Then EM = DK. Since
AD bisects ZA, we observe that /BAD =
ZKAD. Thus in triangles ALD and
AKD, we see that /LAD = /KADi;
/AKD = 90° = ZALD; and AD is com-
mon. Hence triangles ALD and AKD
are congruent, giving DL = DK. But
DL > DM, since BFE lies inside the
triangle(by acuteness property).  Thus
EM > DM. This implies that ZEDM >
ZDEM = 90° — ZEDM. We conclude
that ZEDM > 45°. Since ZCED =
ZEDM, the result follows.

Alternate Solution:

Let ZCED = 6. We have CD = ab/(b + ¢)
and CE = acos C. Using sine rule in triangle
CED, we have

cD _ CE
sind  sin(C +6)’

This reduces to

(b+c)sinf cos C = bsin C cos+bcos Csin b.

B g ab/(b+c) C
Simplification gives csinf cos C' = bsin C' cosf d so that
bsinC _ sinB sin B
ccosC  cosC  sin(m/2—C)’

Since ABC is acute-angled, we have A < 7/2. Hence B+C > n/2 or B > (7/2)—C.
Therefore sin B > sin(n/2 — C'). This implies that tan# > 1 and hence 6 > 7 /4.

tanf =

2. Let a, b, c be three natural numbers such that a < b < ¢ and ged(c — a,c —b) = 1.
Suppose there exists an integer d such that a + d,b + d,c + d form the sides of a
right-angled triangle. Prove that there exist integers [, m such that ¢+ d = I + m?.

Solution:

We have
(c+d)?=(a+d)?+ (b+d)>

This reduces to
d>+2d(a+b—c)+a>+b —c*=0.



Solving the quadratic equation for d, we obtain

d=—(a+b—c)E\/(a+b—c)2—(a2+b>—c2) =—(a+b—c)£+/2(c—a)(c—b).

Since d is an integer, 2(c—a)(c—b) must be a perfect square; say 2(c—a)(c—b) = 22,
But ged(c — a,c — b) = 1. Hence we have

c—a=2% c—b=0v> or c—a=u? c—b=2?

where v > 0 and v > 0 and ged(u, v) = 1. In either of the cases d = —(a+b—c)+2uw.
In the first case

c+d=2c—a—b=+2uv=2u>+v>+2uv = (utv)®+u’

We observe that © = v implies that u = v = 1 and hence c —a = 2,¢c — b = 1. Hence
a, b, c are three consecutive integers. We also see that ¢ +d = 1 forcing b+ d = 0,
contradicting that b+ d is a side of a triangle. Thus u # v and hence ¢+ d is the sum
of two non-zero integer squares.

Similarly, in the second case we get ¢ +d = v? + (u £+ v)?. Thus ¢+ d is the sum of
two squares.

Alternate Solution:

One may use charectarisation of primitive Pythagorean triples. Observe that ged(c—
a,c —b) = 1 implies that ¢ + d,a + d,b + d are relatively prime. Hence there exist
integers m > n such that

a+d=m?>—-n? b+d=2mn, c+d=m?+n’

. Find all pairs (a, b) of real numbers such that whenever « is a root of 2+ ax +b = 0,
o? — 2 is also a root of the equation.

Solution:

Consider the equation 2% 4+ az + b = 0. It has two roots(not necessarily real), say «
and . Either a« = § or a # p.

Case 1:

Suppose o = 3, so that « is a double root. Since a? — 2 is also a root, the only
possibility is @ = a* —2. This reduces to (¢ +1)(a«—2) = 0. Hence « = —1 or @ = 2.
Observe that a = —2a and b = o?. Thus (a,b) = (2,1) or (—4,4).

Case 2:
Suppose a # (. There are four possibilities; (I) @ = o? — 2 and 8 = % — 2;
M) a=p—-2andf=0a>-2 (Ill)a =a®-2=p"-2and a # B or

(IV)B=a*-2=p42-2and a # B
(T) Here (o, 8) = (2, 1) or (—1,2). Hence (a,b) = (— (a+ f),ap) = (-1, —2).
(IT) Suppose a = 32 — 2 and 8 = o® — 2. Then

a-B=pF"-ao"=(B-a)f+a)
Since o # 3, we get 8+ o = —1. However, we also have
a+pB=p"+a*>-4=(a+pB)?—2a8—A4.
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Thus —1 = 1 — 28 — 4, which implies that a3 = —1. Therefore (a,b) = (— (o +
/B)a Ckﬁ) = (1a _1)'

M) fa=0a?>-2=p>-2and a # 3, then a = —3. Thus a = 2, 8 = =2 or
a = —1, f=1. In this case (a,b) = (0,—4) and (0, —1).

(IV) Note that 8 = a®* —2 = % — 2 and « # (3 is identical to (IIT), so that we get
exactly same pairs (a, b).

Thus we get 6 pairs; (a,b) = (—4,4), (2,1), (-1,-2), (1,—1), (0, —4), (0,-1).

. How many 6-digit numbers are there such that:

(a) the digits of each number are all from the set {1,2,3,4,5};

(b) any digit that appears in the number appears at least twice?
(Example: 225252 is an admissible number, while 222133 is not.)

Solution:
Since each digit occurs at least twice, we have following possibilities:
1. Three digits occur twice each. We may choose three digits from {1,2,3,4,5} in

5
( 3) = 10 ways. If each occurs exactly twice, the number of such admissible 6-digit

numbers is
6!

5721 91 x 10 = 900.

5
2. Two digits occur three times each. We can choose 2 digits in <2> = 10 ways.

Hence the number of admissible 6-digit numbers is

6!

3. One digit occurs four times and the other twice. We are choosing two digits again,
which can be done in 10 ways.The two digits are interchangeable. Hence the desired
number of admissible 6-digit numbers is

6!

4. Finally all digits are the same. There are 5 such numbers.
Thus the total number of admissible numbers is 900 4+ 200 4+ 300 4+ 5 = 1405.

. A trapezium ABCD, in which AB is parallel to C'D, is inscribed in a circle with
centre (. Suppose the diagonals AC' and BD of the trapezium intersect at M, and
OM = 2.

(a) If ZAMB is 60°, determine, with proof, the difference between the lengths of
the parallel sides.
(b) If ZAMD is 60°, find the difference between the lengths of the parallel sides.

Solution:

Suppose ZAMB = 60°. Then AMB and C'M D are equilateral triangles. Draw OK
perpendicular to BD.(see Fig.1) Note that OM bisects ZAM B so that Z/OMK =



30°. Hence OK = OM/2 = 1. It follows that KM = /OM? — OK? = /3. We also
observe that

AB—-CD=BM - MD =BK+ KM — (DK — KM) =2KM,

since K is the mid-point of BD. Hence AB — CD = 2+/3.
AN
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Fig. 1 Fig. 2

Suppose ZAMD = 60° so that ZAMB = 120°. Draw P(Q through O parallel to
AC (with @ on AB and P on BD). (see Fig.2) Again OM bisects ZAM B so that
ZOPM = ZOMP = 60°. Thus OMP is an equilateral triangle. Hence diameter
perpendicular to BD also bisects M P. This gives DM = PB. In the triangles
DMC and BPQ, we have BP = DM, /ZDMC = 120° = ZBPQ, and ZDCM =
ZPBQ(property of cyclic quadrilateral). Hence DMC and BP(Q are congruent so
that DC = B(Q. Thus AB — DC = AQ. Note that AQ = KP since KAQP is a
parallelogram. But K P is twice the altitude of triangle OPM. Since OM = 2, the
altitude of OPM is 2 x v/3/2 = /3. This gives AQ = 2V/3.

D Cc

Alternate Solution:

Using some trigonometry, we can get solutions for both the parts simultaneously. Let
K, L be the mid-points of AB and CD respectively. Then L, M,O, K are collinear
(see Fig.3 and Fig.4). Let ZAMK = (= £DML), and OM = d. Since AMB and
CMD are similar triangles, if MD = MC = x then MA = MB = kx for some
positive constant k.

Now MK = kxcosf, ML = x cosf, so that OK = |kx cosf—d| and OL = z cos 0 +d.
Also AK = kxsinf and DL = xsinf. Using

AK? + OK? = AO? = DO? = DI* + OI?,

we get
k’2?sin? 0 + (kz cos — d)? = 2°sin? 0 + (z cos 0 + d)>.
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Simplification gives
(k* — 1)2® = 2xd(k + 1) cos .

Since k +1 > 0, we get (k— 1)z = 2d cosf. Thus
AB —CD =2(AK — LD) = 2(kxsinf — zsinf)
= 2(k—1)zsinf
= 4dcosfsinf
= 2dsin26.

If ZAMB = 60°, then 20 = 60°. If ZAMD = 60°, then 260 = 120°. In either case
sin20 = 1/3/2. If d = 2, then AB — CD = 21/3, in both the cases.

. Prove that:

(a) 5 < V5 +V5+ V5
(b) 8> v8+ 8+ V8,
() n>+/n+ In+ Yn for all integers n > 9.

Solution:

We have (2.2)2 = 4.84 < 5, so that /5 > 2.2. Hence v/5 > /2.2 > 1.4, as (1.4)2 =
1.96 < 2.2. Therefore v/5 > v/5 > 1.4. Adding, we get

V54 v5>2241.441.4=>5.
We observe that \/§<3, /8 =2 and v/8 < v/8 = 2. Thus
V8+V/8+vV8<34+2+2=T7<8.

Suppose n > 9. Then n? > 9n, so that n > 34/n. This gives \/n < n/3. Therefore
vn < /n < y/n <n/3. We thus obtain

Vn+/n+v/n < (n/3)+ (n/3) + (n/3) =n.



