1. Let ABC be an acute-angled triangle and let D, E, F be the feet of perpendiculars from

A, B, C respectively to BC, CA, AB. Let the perpendiculars from F to CB, CA, AD, BE
meet them in P, ), M, N respectively. Prove that P,Q, M, N are collinear.

Solution: Observe that C,Q, F, P are concyclic. Hence
ZCQP =/ZCFP =90° - LZFCP = /B.
Similarly the concyclicity of F, M, Q, A gives
ZAQN =90° + LFQM =90° + LFAM =90° + 90° — /B = 180° — 4B.
Thus we obtain ZCQP + ZAQN = 180°. It follows that @), N, P lie on the same line.
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We can similarly prove that ZCPQ + ZBPM = 180°. This implies that P, M, are
collinear. Thus M, N both lie on the line joining P and Q.

2. Find the least possible value of a + b, where a,b are positive integers such that 11 divides
a + 13b and 13 divides a + 11b.

Solution:Since 13 divides a + 115, we see that 13 divides a — 2b and hence it also divides
6a — 12b. This in turn implies that 13|(6a + b). Similarly 11|(a + 13b) = 11|(a + 2b) =
11|(6a + 12b) = 11|(6a + b). Since ged(11,13) = 1, we conclude that 143|(6a + b). Thus
we may write 6a + b = 143k for some natural number k. Hence

6a + 6b = 143k + 5b = 144k + 6b — (k + b).
This shows that 6 divides k + b and hence k + b > 6. We therefore obtain
6(a +b) = 143k + 5b = 138k + 5(k + b) > 138 + 5 x 6 = 168.

It follows that a + b > 28. Taking a = 23 and b = 5, we see that the conditions of the
problem are satisfied. Thus the minimum value of a + b is 28.

3. If a, b, c are three positive real numbers, prove that

a?+1 V+1 2+1
> 3.
b+c c+a a+b —

Solution: We use the trivial inequalities a® + 1 > 2a, b> +1 > 2b and ¢ + 1 > 2¢. Hence

we obtain
a?2+1 bv+1 c2-|-1> 2a 2b 2¢

b+c c+a a+b_b+c+c+a+a+b'
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Adding 6 both sides, this is equivalent to

1 1 1
20 +2b+2 > 9.
(20 +2b+ C)(b+c+c+a+a+b)_g

Taking z =b+ ¢, y = c+ a, z = a + b, this is equivalent to
1 1 1
(z+y+2) <—+—+—> > 9.
T Yy =z
This is a consequence of AM-GM inequality.

Alternately: The substitutions b+c=z,c+a =1y, a+ b = z leads to

2a y+z—=x T Yy
= — = - +=]-3>6-3=3.
b+c Z z Z( +:v) -

Y

. A 6 x 6 square is dissected in to 9 rectangles by lines parallel to its sides such that all these
rectangles have integer sides. Prove that there are always two congruent rectangles.

Solution: Consider the dissection of the given 6 X 6 square in to non-congruent rectangles
with least possible areas. The only rectangle with area 1 is an 1 x 1 rectangle. Similarly,
we get 1 x 2, 1 x 3 rectangles for areas 2 ,3 units. In the case of 4 units we may have either
a 1 x 4 rectangle or a 2 X 2 square. Similarly, there can be a 1 x 5 rectangle for area 5 units
and 1 x 6 or 2 x 3 rectangle for 6 units. Any rectangle with area 7 units must be 1 x 7
rectangle, which is not possible since the largest side could be 6 units. And any rectangle
with area 8 units must be a 2 x 4 rectangle If there is any dissection of the given 6 X 6 square
in to 9 non-congruent rectangles with areas a1 < a2 < a3 < a4 < a5 < ag < a7 < ag < ag,
then we observe that

ap >1,a2>2,a3>3,a4>4,a5>4, a6 >5, ar > 6, ag > 6, ag > 8,
and hence the total area of all the rectangles is
a1 +as+---+ag>1+24+3+4+4+5+6+6+8=39 > 36,

which is the area of the given square. Hence if a 6 X 6 square is dissected in to 9 rectangles
as stipulated in the problem, there must be two congruent rectangles.

. Let ABCD be a quadrilateral in which AB is parallel to CD and perpendicular to AD;
AB = 3CD; and the area of the quadrilateral is 4. If a circle can be drawn touching all the
sides of the quadrilateral, find its radius.

Solution: Let P, (), R, S be the points of contact of in-circle with the sides AB, BC, CD,
DA respectively. Since AD is perpendicular to AB and AB is parallel to DC, we see that
AP = AS = SD = DR = r, the radius of the inscribed circle. Let BP = BQ = y and
CQ =CR=1z. Using AB =3CD, we get r +y = 3(r + z).



Since the area of ABCD is 4, we also get
1 1

Thus we obtain 7(r + z) = 1. Using Pythagoras theorem, we obtain BC? = BK? + CK?.
However BC' = y 4+, BK = y — z and CK = 2r. Substituting these and simplifying, we
get zy = r?. But r+y = 3(r +x) gives y = 2r +3z. Thus r? = x(2r + 3z) and this simplifies
to (r — 3z)(r + ) = 0. We conclude that r = 3z. Now the relation r(r + z) = 1 implies
that 4r? = 3, giving r = v/3/2.

. Prove that there are infinitely many positive integers n such that n(n + 1) can be expressed
as a sum of two positive squares in at least two different ways. (Here a? +b% and b% 4 a? are
considered as the same representation.)

Solution: Let Q = n(n + 1). It is convenient to choose n = m?, for then Q is already a
sum of two squares: Q = m? (m2 + 1) = ('177,2)2 + m?2. If further m? itself is a sum of two
squares, say m? = p? + ¢2, then

Q=2+ @) (m2+1) = (pm+q)+ (p—qm)>.

Note that the two representations for () are distinct. Thus, for example, we may take
m = 5k, p = 3k, ¢ = 4k, where k varies over natural numbers. In this case n = m? = 25k2,
and

Q = (25k%)° + (5k)% = (15K + 4k)° + (20k2 — 3k).

As we vary k over natural numbers, we get infinitely many numbers of the from n(n + 1)
each of which can be expressed as a sum of two squares in two distinct ways.

. Let X be the set of all positive integers greater than or equal to 8 and let f : X — X be a
function such that f(z 4+ y) = f(zy) for all z > 4, y > 4. If f(8) = 9, determine f(9).

Solution: We observe that

f(9)=f(4+5)=f(4-5)=f(20) = f(16 +4) = f(16 - 4) = f(64)
= f(8-8)=f(8+8)=f(16) = f(4-4) = f(4+4) = f(8).
Hence if f(8) =9, then f(9) = 9. (This is one string. There may be other different ways
of approaching f(8) from f(9). The important thing to be observed is the fact that the

rule f(z + y) = f(zy) applies only when z and y are at least 4. One may get strings using
numbers z and y which are smaller than 4, but that is not valid. For example

f9O)=f3-3)=fB+3)=/f(6)=r(4+2)=71(4-2) = [(8),

is not a valid string.)




