
Number Theory INMOTC 2014 Basic definitions and results

These are some notes (written by Tejaswi Navilarekallu) used at Indian National Mathematical
Olympiad Training Camp (INMOTC) 2014, held in Bengaluru during the first week of January, 2014.

1 Basic definitions and results

Definition 1.1. Given integers a and b, we say that a divides b if there exists an integer m such that
b = am. We also say that a is a divisor (or a factor) of b. We write a | b.

Definition 1.2. A positive integer p is called a prime number if it has exactly two positive divisors
(namely 1 and itself). A composite number is an integer n > 1 that is not a prime.

Here are some properties.

• If a | b then a | bc.

• If a | b and b | c then a | c.

• If a | b and a | c then a | (b± c).

• If a | b and a | c then a2 | bc.

• If a | b then ak | bk.

By the definition of prime number it is easy to prove the following:

Proposition 1.3. If n > 1 is an integer then n has a prime divisor.

Proof. By induction. If n is a prime then we are done. Otherwise, let m be a divisor of n, with m 6= 1, n.
Then 1 < m < n. So, by induction m has a prime divisor p. It is easy to see that p divides n.

Corollary 1.4. There infinitely many prime numbers.

Proof. If p1, . . . , pk are all the primes, then let n = p1p2 · · · pk + 1. Then, by the above proposition we
get a prime factor p of n, which will have to equal one of the pi’s. This gives a contradiction.

The following are two very important results in number theory.

Theorem 1.5. If p is a prime number, a and b are integers such that p divides ab then p divides a or
p divides b.

Theorem 1.6. Every integer n > 1 can be uniquely written as

n = pα1
1 pα2

2 · · · p
αk

k

where p1 < p2 < · · · < pk are primes and αi’s are positive integers.

Here is a simple formula for the number of positive divisors of a given number. Let n be a positive
integer. From the prime factorization, we can write n as

n = pα1
1 pα2

2 · · · p
αk

k

where pi’s are distinct prime numbers, and αi’s are positive integers. In this case, the number of positive
divisors of n is

(α1 + 1)(α2 + 1) · · · (αk + 1).

From the above formula we get:

Proposition 1.7. The number of positive divisors of n is odd if and only if n is a square of an integer.

Definition 1.8. The greatest common divisor of two positive integers m and n is defined as the highest
integer that divides both m and n. We denote this by gcd(m,n) or by just (m,n). We say that two
integers m and n are coprime to each other if their gcd is 1.
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Definition 1.9. The least common multiple of two positive integers m and n is defined as the smallest
integer that is divisible by both m and n. We denote this by lcm(m,n).

Here are some properties:

• gcd(m,n) · lcm(m,n) = mn.

• If d = (m,n) then there are integers x and y such that mx+ ny = d.

• (m,n) = (m, rm+ n) for any integer r.

• If m | ab and (m, a) = 1 then m | b.

• If m | a, n | a and (m,n) = 1 then mn | a.

Given integers m and n, we can write
m = nq + r

where q and r are integers with 0 ≤ r ≤ n− 1. We call q the quotient and r the remainder.

Example. Common factors (or the lack thereof) between variables is something to look for in number
theory problems. For example, consider the equation

x2 + y2 = z2 , (1.10)

with x, y, z being positive integers. If d = (x, y, z) then (x/d)2 +(y/d)2 = (z/d)2 and (x/d, y/d, z/d) = 1.
In other words, all the solutions to (1.10) can be obtained by primitive solutions, i.e., solutions in which
(x, y, z) = 1. For a primitive solution, we note that one of x and y has to be odd, and the other even.
Without loss of generality we suppose that y is even. We can then rewrite (1.10) as

x2 = (z2 − y2) = (z − y)(z + y) .

Note that one in fact has (y, z) = 1 for primitive solutions, and since z is odd it follows that (z+y, z−y) =
1. It follows then that both z + y and z − y have to be squares (of odd coprime integers). Thus any

primitive solution to (1.10) is given by
(
rs, r

2−s2
2 , r

2+s2

2

)
for some odd coprime integers r > s.

2 Congruences

Definition 2.1. For integers a, b and m, we say that a is congruent to b modulo m if m divides (a− b).
We write

a ≡ b (mod m).

The idea is to get a good handle on the remainder obtained when a is divided by b. Some properties
of congruences are as follows:

Let a ≡ b (mod m) and c ≡ d (mod m). Then

• b ≡ a (mod m).

• If b ≡ e (mod m) then a ≡ e (mod m).

• a± c ≡ b± d (mod m).

• ac ≡ bd (mod m).

• ak ≡ bk (mod m).

Proposition 2.2. Let a and m be integers with (a,m) = 1. Then

1. there is an integer b such that ab ≡ 1 (mod m).

2. there is a positive integer k such that ak ≡ 1 (mod m).
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If (a,m) = 1, then the smallest positive integer k such that ak ≡ 1 (mod m) is called the order of a
modulo m. For example, the order of 2 modulo 15 is 4.

Theorem 2.3 (Wilson’s Theorem). If p is a prime then (p− 1)! ≡ −1 (mod p).

Theorem 2.4 (Fermat’s little theorem). Let p be a prime number and a be an integer. Then ap ≡ a
(mod p). Equivalently, if p - a then ap−1 ≡ 1 (mod p).

Theorem 2.5. Let n be an integer and let p be a prime dividing n2 + 1. Then either p = 2 or p ≡ 1
(mod 4).

3 Problems

1. For a positive integer n, let d(n) denote the number of it’s positive divisors. For example, d(15) = 4
since the divisors of 15 are 1, 3, 5 and 15. Determine whether the sum d(1) + d(2) + · · ·+ d(2014)
is even or odd.

2. Find all positive integers a such that a+ 3 divides the lcm(a, a+ 1, a+ 2).

3. What is the last digit of (7777)7777?

4. If n = 4k + 3 then show that there is a prime p ≡ 3 (mod 4) that divides n.

5. Use the above and imitate the proof of Corollary 1.4 to show that there are infinitely many primes
of the form 4k + 3.

6. Show that there exists a positive integer n such that n! has exactly 1993 zeros at the end.

7. Show that n5 − n is divisible by 30 for all n > 0.

8. Let m and n be integers such that 24 divides mn+ 1. Prove that 24 divides m+ n.

9. Show that the tenth digit of 3k is even for all k ≥ 1.

10. Show that 3 does not divide n2 + 1 for any integer n. Show that the same result holds true if we
replace by 3 by 7. (Do not use Theorem 2.5).

11. Show that 1993 − 1399 is a positive integer divisible by 162.

12. Find all solutions to the equation px = y4 + 4 where p is a prime and x, y are positive integers.

13. Show that n4 + 4n is not a prime number for n > 1.

14. Find all positive integers m and n such that 2m + 3n is a square.

15. Find all non-negative integers x, y, z such that 3x + 4y = 5z.

16. Find all primes p such that 2p−1−1
p is a square.

17. Determine all the integers n such that n2 + 19n+ 92 is a square.

18. Find all integer solutions to the equation x2 + 7x− 14(q2 + 1) = 0.

19. Find all pairs of integers (x, y) such that y2 = x3 + 7.

20. If m and n are integers show that 4mn−m− n is not a square.

21. Show that there are infinitely many prime numbers of the form 4k+ 1. (Hint: If p1, . . . , pk are the
only such primes then look at n = (2p1p2 · · · pk)2 + 1.)

22. Prove that for every positive integer n there exists an n-digit number divisible by 5n all of whose
digits are odd.
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23. Find all primes p and q such that pq divides 2p + 2q.

24. Prove that there always exists three numbers a, b, c from any given seven integers such that a2 +
b2 + c2 − ab− bc− ca is divisible by 7.

25. Show that every rational number can be written as a quotient of products of factorials of (not
necessarily distinct) primes, and that the representation is unique up to rearranging and cancelling
common factors.

26. Find all primes p for which there are positive integers a and b such that p = a2 + b2 and p divides
a3 + b3 − 4.

27. Find all natural numbers n and k such that 2n + 3 = 11k.

28. Let f(n) denote the least positive integer such that
∑f(n)
k=1 k is divisible by n. Prove that f(n) =

2n− 1 if and only if n is a power of 2.

29. Find all integers x and y such that x4 + x3 + x2 + x+ 1 = y2.

30. Let f(x) be a non-constant polynomial with integer coefficients. Prove that there exists an integer
k such that f(k) is not a prime.

31. Let P (x) be a polynomial with integer coefficients. Prove that the polynomial

Q(x) = P (x4)P (x3)P (x2)P (x) + 1

has no integer roots.

32. Let f(x) be a polynomial with integer coefficients. If g(x) = f(x) + 77 has an integer root, prove
that f(x) has at most four distinct integer roots.
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