
Number Theory IMOTC 2013 Divisibility and congruences

These are some notes (written by Tejaswi Navilarekallu) used at the International Mathematical
Olympiad Training Camp (IMOTC) 2013 held in Mumbai during April-May, 2013.

1 Divisibility and congruences

Definition 1.1. Given integers a and b, we say that a divides b if there exists an integer m such that
b = am. We also say that a is a divisor (or a factor) of b. We write a | b.

Definition 1.2. A positive integer p is called a prime number if it has exactly two positive divisors
(namely 1 and itself). A composite number is an integer n > 1 that is not a prime.

Here are some properties.

• If a | b then a | bc.

• If a | b and b | c then a | c.

• If a | b and a | c then a | (b± c).

• If a | b and a | c then a2 | bc.

• If a | b then ak | bk.

By the definition of prime number it is easy to prove the following:

Proposition 1.3. If n > 1 is an integer then n has a prime divisor.

Proof. By induction. If n is a prime then we are done. Otherwise, let m be a divisor of n, with m 6= 1, n.
Then 1 < m < n. So, by induction m has a prime divisor p. It is easy to see that p divides n.

Corollary 1.4. There infinitely many prime numbers.

Proof. If p1, . . . , pk are all the primes, then let n = p1p2 · · · pk + 1. Then, by the above proposition we
get a prime factor p of n, which will have to equal one of the pi’s. This gives a contradiction.

The following are two very important results in number theory.

Theorem 1.5. If p is a prime number, a and b are integers such that p divides ab then p divides a or
p divides b.

Theorem 1.6 (Fundamental theorem of arithmetic). Every integer n > 1 can be uniquely written as

n = pα1
1 pα2

2 · · · p
αk
k

where p1 < p2 < · · · < pk are primes and αi’s are positive integers.

Definition 1.7. The greatest common divisor of two positive integers m and n is defined as the highest
integer that divides both m and n. We denote this by gcd(m,n) or by just (m,n). We say that two
integers m and n are coprime to each other if their gcd is 1.

Definition 1.8. The least common multiple of two positive integers m and n is defined as the smallest
integer that is divisible by both m and n. We denote this by lcm(m,n).

1



Number Theory IMOTC 2013 Divisibility and congruences

Example. Common factors (or the lack thereof) between variables is something to look for in number
theory problems. For example, consider the equation

x2 + y2 = z2 , (1.9)

with x, y, z being positive integers. If d = (x, y, z) then (x/d)2 +(y/d)2 = (z/d)2 and (x/d, y/d, z/d) = 1.
In other words, all the solutions to (1.9) can be obtained by primitive solutions, i.e., solutions in which
(x, y, z) = 1. For a primitive solution, we note that one of x and y has to be odd, and the other even.
Without loss of generality we suppose that y is even. We can then rewrite (1.9) as

x2 = (z2 − y2) = (z − y)(z + y) .

Note that one in fact has (y, z) = 1 for primitive solutions, and since z is odd it follows that (z+y, z−y) =
1. It follows then that both z + y and z − y have to be squares (of odd coprime integers). Thus any

primitive solution to (1.9) is given by
(
rs, r

2−s2
2 , r

2+s2

2

)
for some odd coprime integers r > s.

Here are some properties of greatest common divisors which are often useful:

• (m,n) = (m, rm+ n) for any integer r.

• If d = (m,n) then there are integers x and y such that mx+ ny = d.

• If m | ab and (m, a) = 1 then m | b.

• If m | a, n | a and (m,n) = 1 then mn | a.

Before going further, we introduce the notion of congruences. The theory of congruences is essentially
a notational simplification of the divisibility properties.

Definition 1.10. For integers a, b and m, we say that a is congruent to b modulo n if n divides (a− b).
We write

a ≡ b (mod n).

The idea is to get a good handle on the remainder obtained when a is divided by n. The basic
properties of divisibility mentioned in the earlier section can be translated in congruence notation as
follows. Let a ≡ b (mod n) and c ≡ d (mod n). Then

• b ≡ a (mod n).

• If b ≡ e (mod n) then a ≡ e (mod n).

• a± c ≡ b± d (mod n).

• ac ≡ bd (mod n).

• ak ≡ bk (mod n).

Proposition 1.11. Let a and n be integers with (a, n) = 1. Then

(a) there is an integer b such that ab ≡ 1 (mod n); and,

(b) there is a positive integer k such that ak ≡ 1 (mod n).

Proof. (a) Since (a, n) = 1 we have from the properties of gcds that there exists integers b and c such
that ab+ nc = 1 and hence ab ≡ 1 (mod n).

(b) Consider {1, a, a2, . . . , an+1}. Since there are only n possible remainders modulo n it follows that at
least two elements in this set are congruent modulo n, and hence we get ak ≡ 1 (mod n) for some k.

2



Number Theory IMOTC 2013 Divisibility and congruences

Theorem 1.12 (Chinese remainder theorem). Let m,n be positive integers with (m,n) = 1 and let a, b
be integers. Then there is a unique integer x0 such that 0 ≤ x0 ≤ mn− 1, x0 ≡ a (mod m) and x0 ≡ b
(mod n). Morevoer, any x which satisfies x ≡ a (mod m) and x ≡ b (mod n) equals x0 + kmn for some
integer k.

Proof. Let 0 ≤ a0 ≤ m be such that a ≡ a0 (mod m). Consider the set {a0, a0 + m, a0 + 2m, . . . , a0 +
mn − m}. Since (m,n) = 1 it follows that no two elements from this set leave same remainder when
divided by n. Therefore there is a unique q with 0 ≤ q ≤ n − 1 such that x0 = a0 + qm ≡ b (mod n).
The second part of the theorem follows from the uniqueness of x0.

Definition 1.13 (Euler’s totient function). For a natural number n we denote by ϕ(n) the number of
integers between 1 and n (both inclusive) that are coprime to n.

Let Sn denote the set {1, 2, . . . , n} and Tn = {a|1 ≤ a ≤ n, (a, n) = 1} ⊆ Sn. Then by definition we
have ϕ(n) = |Tn|. We shall think of elements of these sets as “remainders” when integers are divided
by n. Therefore we distinguish between elements in Tm and Tn for m 6= n.

Proposition 1.14. The function ϕ from the set of natural numbers to itself is multiplicative, i.e., if m
and n are coprime positive integers then ϕ(mn) = ϕ(m)ϕ(n).

Proof. Consider the map f : Tmn → Tm×Tn defined by a 7→ (ā, ā), where the image of a in Tm (and Tn,
respectively) is the remainder when a is divided by m (resp. n). Given remainders c and d modulo m and
n, respectively, by Chinese remainder theorem it follows that the equations x ≡ c (mod m) and x ≡ d
(mod n) have a unique solution modulo mn. This shows that f is a bijection and hence the result.

Theorem 1.15. If n = pα1
1 pα2

2 · · · p
αk
k with p1, p2, . . . , pk distinct primes and α1, α2, . . . , αk positive

integers then

ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pk

)
.

Proof. Both the sides in the statement of the theorem are multiplicative, and therefore it is enough to

prove the result when n is a power of prime. If n = pα then ϕ(n) = pα − pα−1 = n
(

1− 1
p

)
, and hence

the theorem follows.

There are many identities involving the totient function that are not difficult to prove. We give here
one example which is motivated by the study of cyclotomic polynomials.

Proposition 1.16. For a positive integer n one has∑
d|n

ϕ(d) = n .

We first prove a useful lemma.

Lemma 1.17. Let f be a multiplicative function from the set of positive integers to itself. Define
F (n) =

∑
d|n f(d). Then F is also multiplicative.

Proof. Suppose that m,n are positive integers such that (m,n) = 1. Then

F (mn) =
∑
d|mn

f(d) =
∑

d1|m,d2|n

f(d1d2)

=
∑
d1|m

∑
d2|n

f(d1)f(d2) =
∑
d1|m

f(d1)F (n) = F (m)F (n) .
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Proof of Proposition 1.16. From the previous lemma it follows that both the sides of the required identity
are multiplicative functions. Therefore it is enough to prove the result for prime powers. If n = pα then
the left-hand side equals ∑

d|pα
ϕ(d) = 1 +

α∑
k=1

(pk − pk−1) = pα .

Remark. One of the motivations for studying Euler’s totient function comes from the theory of cyclo-
tomic fields. Let n be a positive integer. While solving certain diophantine equations, it is handy to have
a factorisation of the polynomial xn − 1 into polynomials with integer coefficients. For example, when
we looked the solutions to Pythagoras equation, the we used the factorisation of the polynomial x2 − 1.

The polynomial Fn(x) = xn − 1 has exactly n distinct complex roots. In fact, if ζn = e2πi/n then
{ζrn}0≤r≤n−1 is the set of all roots. Similar to the notion of order modulo an integer, we can define the
order of a root ζrn of unity as the least positive integer k such that (ζrn)k = 1. In particular, the order of
ζn is n.

It then follows that for any d dividing n, there are exactly ϕ(d) roots of order d. This gives the identity∑
d|n ϕ(d) = n. Define Φd(x) =

∏
(x − ζ), where the product runs over all the roots of xn − 1 = 0 of

order d. Then Φd(x) is a polynomial of degree ϕ(d), and in fact, it is irreducible and all its coefficients
are integers (why?). Moreover, Φd(x) is independent of n. This polynomial is called the d-th cyclotomic
polynomial.

Here are some identities left as an exercise for the reader.

Exercise 1.18. Prove that ∑
1≤k≤n,(k,n)=1

k =
nϕ(n)

2
.

Exercise 1.19. Find a closed expression in terms of n and its prime factorisation for the number of
integers k between 1 and n such that (k, n) = (k − 1, n) = 1.

Exercise 1.20. Find a closed expression in terms of n and its prime factorisation for sum of integers
k between 1 and n such that (k, n) = (k − 1, n) = 1.

There are also many conjectures related to the totient function. Here are two examples.

Conjecture 1.21. For a positive integer n, if ϕ(n) divides n− 1 then n is a prime.

Conjecture 1.22. For a positive integer n, if n divides ϕ(n)d(n) + 2, where d(n) is the number of
positive divisors of n.

We now state some of the very powerful results.

Theorem 1.23 (Wilson’s Theorem). If p is a prime then (p− 1)! ≡ −1 (mod p).

Theorem 1.24 (Fermat’s little theorem). Let p be a prime number and a be an integer. Then ap ≡ a
(mod p). Equivalently, if p - a then ap−1 ≡ 1 (mod p).

Theorem 1.25. Let n be a positive integer and a an integer such that (a, n) = 1. Then aϕ(n) ≡ 1
(mod n).

Squares play an important role in analysing the properties of integer solutions to diophantine equa-
tions. (We have already seen this while looking at the solutions to Pythagoras equation.) Therefore
it is good to know and keep track of properties of squares. In particular, it is very useful to know the
following simple results.
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• If n2 = ab and (a, b) = 1 then a and b are squares.

• If n is not divisible by 3 then n2 ≡ 1 (mod 3).

• If n is odd then n2 ≡ 1 (mod 4) and in fact, n2 ≡ 1 (mod 8).

• If p is a prime, then the equation x2 ≡ a (mod p) has a solution for precisly (p+ 1)/2 values of a
with 0 ≤ a ≤ p− 1.

Slightly more non-trivial results are below.

Theorem 1.26. Let n be an integer and let p be a prime dividing n2 + 1. Then either p = 2 or p ≡ 1
(mod 4). Conversely, if p = 2 or p ≡ 1 (mod 4) then there exists an integer n such that p divides n2 +1.

Theorem 1.27. If p = 2 or p ≡ 1 (mod 4) then there exists integers a and b such that p = a2 + b2.

Definition 1.28. If (a, n) = 1, then the smallest positive integer k such that ak ≡ 1 (mod n) is called
the order of a modulo n, and is denoted by on(a).

The importance of orders is somewhat apparent from the following result.

Theorem 1.29. Let n be a positive integer and a an integer such that (a, n) = 1. If ad ≡ 1 (mod n)
then on(a) divides k. In particular, on(a) divides ϕ(n).

Example. Suppose that p is a prime dividing a2 + 1, or in other words a2 ≡ −1 (mod p). Squaring
both the sides we get a4 ≡ 1 (mod p). Therefore op(a) divides 4, but does not divide 2. This proves
that op(a) = 4 and hence 4 divides p− 1.

Example. Let a, b be relatively prime positive integers. Let p be a prime dividing a6
n

+ b6
n

. Then
a6
n

+ b6
n ≡ 0 (mod p). Note that (a, b) = 1 implies that (a, p) = (b, p) = 1. Therefore b has an “inverse”

modulo p, i.e., there exists c such that bc ≡ 1 (mod p). We therefore get (ac)6
n ≡ −(bc)6

n ≡ −1
(mod p). Squaring we get (ac)2·6

n ≡ 1 (mod p). Therefore op(ac) divides 2 · 6n and does not divide 6n.
This shows that op(ac) = 2n+1 · d for some odd integer d. Since op(ac) divides p− 1 it follows that p ≡ 1
(mod 2n+1).

There are a few reasons why orders are important: (a) if something is congruent to one modulo n then
its k-th power is also congruent to one modulo n; (b) if ak ≡ 1 (mod n) then ak−1 is the multiplicative
inverse of a modulo n; (c) if ak ≡ −1 (mod n) then v2(ϕ(n)) ≥ v2(k) + 1 where vq(m) denotes the
exponent of q dividing m.

2 Problems

When dealing with a diophantine equation, there are few systematic steps that one can go through to
get a better idea of the problem.

• To start with, if possible, find any small solution by plugging in small values. If there exists a
solution, and you expect only finitely many solutions, then you cannot get a contradition unless
you assume something more about the variables.

• Identify the possible parities of all the variables.
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• Try to rearrange the terms so that both the sides are nice. The following are nice to have in an
equation:

– factorisable polynomials;

– squares or higher powers;

– sum of two squares (and in particular n2 + 1 for some integer n).

• Consider the equations modulo small primes.

• Look for the properties of the prime divisors of each side of the (rearranged) equation.

Example. Consider the equation y2 = x3+7. We would like to find all integer solutions to this equation.

• To start with, we plug is small values of x and y to see if there are any simple solutions, and find
that there are are no small solutions.

• We next consider the parity of x and y. Clearly, they have to be of opposite parity. Also, if x is
even then x2 + 7 ≡ 3 (mod 4) while y2 ≡ 1 (mod 4). Hence x is odd and y is even.

• Now we try to manipulate the equation to get nice terms on both the sides. Even though y2 is nice
x3 + 7 is not-so-nice, so there is need of manipulation. Note that adding 1 to both the sides make
them nice since we will have sum of two squares on the left-hand side and a factorisable polynomial
on the right-hand side. So we rewrite the equation as

y2 + 1 = (x+ 2)(x2 − 2x+ 4) .

• The prime divisors of left-hand side have special property, and therefore all the prime divisors of
the right-hand side should also have the same property. That is, if a prime p divides the right-hand
side then p ≡ 1 (mod 4). In particular, this implies that x2 − 2x+ 4 ≡ 1 (mod 4). But since x is
odd, x2 − 2x+ 4 = (x− 1)2 + 3 ≡ 3 (mod 4). Hence we have a contradition.

We have thus shown that there are no solutions to the given equation.

1. Find all pairs (x, y) of positive integers such that y2 = x3 + 7.

2. Find all pairs (m,n) of positive integers such that 2m + 3n is a square.

3. Find all pairs (m,n) of positive integers such that 2m + 3 = 11n.

4. Find all primes p such that (2p−1 − 1)/p is a square.

5. Find all positive integers m and n such that 2n − 1 divides m2 + 9.

6. Find all positive integers m and n such that m2 + n2 is a prime and it divides m3 + n3 − 4.

7. Find all pairs (x, y) of positive integers such that x7−1
x−1 = y5 − 1.

8. For a positive integer n let f(n) denote the smallest positive integer k such that n divides 1 + 2 +
· · ·+ k. Find all positive integers n such that f(n) = 2n− 1.

9. Given an integer k ≥ 2, prove that there infinitely many positive integers n such that 22
n

+ k is
composite.
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