
Problems and Solutions, INMO-2011

1. Let D, E, F be points on the sides BC, CA, AB respectively of a triangle ABC such that
BD = CE = AF and ∠BDF = ∠CED = ∠AFE. Prove that ABC is equilateral.

Solution 1:
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Let BD = CE = AF = x; ∠BDF =
∠CED = ∠AFE = θ. Note that ∠AFD =
B + θ, and hence ∠DFE = B. Similarly,
∠EDF = C and ∠FED = A. Thus the tri-
angle EFD is similar to ABC. We may take
FD = ka, DE = kb and EF = kc, for some
positive real constant k. Applying sine rule to
triangle BFD, we obtain

c − x

sin θ
=

ka

sinB
=
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,

where R is the circum-radius of ABC. Thus
we get 2Rk sin θ = b(c − x)/a. Similarly, we
obtain 2Rk sin θ = c(a − x)/b and 2Rk sin θ =
a(b − x)/c. We therefore get

b(c − x)

a
=

c(a − x)

b
=

a(b − x)

c
. (1)

If some two sides are equal, say, a = b, then a(c− x) = c(a− x) giving a = c; we get a = b = c
and ABC is equilateral. Suppose no two sides of ABC are equal. We may assume a is the
least. Since (1) is cyclic in a, b, c, we have to consider two cases: a < b < c and a < c < b.

Case 1. a < b < c.

In this case a < c and hence b(c − x) < a(b − x), from (1). Since b > a and c − x > b − x, we
get b(c − x) > a(b − x), which is a contradiction.

Case 2. a < c < b.

We may write (1) in the form

(c − x)

a/b
=

(a − x)

b/c
=

(b − x)

c/a
. (2)

Now a < c gives a − x < c − x so that
b

c
<

a

b
. This gives b2 < ac. But b > a and b > c, so

that b2 > ac, which again leads to a contradiction

Thus Case 1 and Case 2 cannot occur. We conclude that a = b = c.

Solution 2. We write (1) in the form (2), and start from there. The case of two equal sides
is dealt as in Solution 1. We assume no two sides are equal. Using ratio properties in (2), we
obtain

a − b

(ab − c2)/ca
=

b − c

(bc − a2)/ab
.

This may be written as c(a − b)(bc − a2) = b(b − c)(ab − c2). Further simplification gives
ab3 + bc3 + ca3 = abc(a + b + c). This may be further written in the form

ab2(b − c) + bc2(c − a) + ca2(a − b) = 0. (3)

If a < b < c, we write (3) in the form

0 = ab2(b − c) + bc2(c − b + b − a) + ca2(a − b) = b(c − b)(c2 − ab) + c(b − a)(bc − a2).

Since c > b, c2 > ab, b > a and bc > a2, this is impossible. If a < c < b, we write (3), as in
previous case, in the form

0 = a(b − c)(b2 − ca) + c(c − a)(bc − a2),

which again is impossible.

One can also use inequalities: we can show that ab3 + bc3 + ca3 ≥ abc(a + b + c), and equality
holds if and only if a = b = c. Here are some ways of deriving it:



(i) We can write the inequality in the form

b2
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a
+
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b
≥ a + b + c.

Adding a + b + c both sides, this takes the form
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c
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b
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But AM-GM inequality gives

b2

c
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c2

a
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b
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Hence the inequality follows and equality holds if and only if a = b = c.

(ii) Again we write the inequality in the form

b2

c
+

c2

a
+
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b
≥ a + b + c.

We use b/c with weight b, c/a with weight c and a/b with weight a, and apply weighted
AM-HM inequality:
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which reduces to a + b + c. Again equality holds if and only if a = b = c.

Solution 3. Here is a pure geometric solution given by a student. Consider the triangle
BDF , CED and AFE with BD, CE and AF as bases. The sides DF , ED and FE make
equal angles θ with the bases of respective triangles. If B ≥ C ≥ A, then it is easy to
see that FD ≥ DE ≥ EF . Now using the triangle FDE, we see that B ≥ C ≥ A gives
DE ≥ EF ≥ FD. Combining, you get FD = DE = EF and hence A = B = C = 60◦.

2. Call a natural number n faithful, if there exist natural numbers a < b < c such that a divides
b, b divides c and n = a + b + c.

(i) Show that all but a finite number of natural numbers are faithful.

(ii) Find the sum of all natural numbers which are not faithful.

Solution 1: Suppose n ∈ N is faithful. Let k ∈ N and consider kn. Since n = a + b + c, with
a > b > c, c

∣∣b and b
∣∣a, we see that kn = ka + kb + kc which shows that kn is faithful.

Let p > 5 be a prime. Then p is odd and p = (p − 3) + 2 + 1 shows that p is faithful. If
n ∈ N contains a prime factor p > 5, then the above observation shows that n is faithful. This
shows that a number which is not faithful must be of the form 2α3β5γ . We also observe that
24 = 16 = 12 + 3 + 1, 32 = 9 = 6 + 2 + 1 and 52 = 25 = 22 + 2 + 1, so that 24, 32 and 52 are
faithful. Hence n ∈ N is also faithful if it contains a factor of the form 2α where α ≥ 4; a factor
of the form 3β where β ≥ 2; or a factor of the form 5γ where γ ≥ 2. Thus the numbers which
are not faithful are of the form 2α3β5γ , where α ≤ 3, β ≤ 1 and γ ≤ 1. We may enumerate all
such numbers:

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120.

Among these 120 = 112+7+1, 60 = 48+8+4, 40 = 36+3+1, 30 = 18+9+3, 20 = 12+6+2,
15 = 12 + 2 + 1, and 10 = 6 + 3 + 1. It is easy to check that the other numbers cannot be
written in the required form. Hence the only numbers which are not faithful are

1, 2, 3, 4, 5, 6, 8, 12, 24.

Their sum is 65.

Solution 2: If n = a + b + c with a < b < c is faithful, we see that a ≥ 1, b ≥ 2 and c ≥ 4.
Hence n ≥ 7. Thus 1, 2, 3, 4, 5, 6 are not faithful. As observed earlier, kn is faithful whenever
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n is. We also notice that for odd n ≥ 7, we can write n = 1 +2 + (n− 3) so that all odd n ≥ 7
are faithful. Consider 2n, 4n, 8n, where n ≥ 7 is odd. By observation, they are all faithful.
Let us list a few of them:

2n : 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, . . .

4n : 28, 36, 44, 52, 60, 68, . . .

8n : 56, 72, . . . ,

We observe that 16 = 12 + 3 + 1 and hence it is faithful. Thus all multiples of 16 are also
faithful. Thus we see that 16, 32, 48, 64, . . . are faithful. Any even number which is not a
multiple of 16 must be either an odd multiple of 2, or that of 4, or that of 8. Hence, the only
numbers not covered by this process are 8, 10, 12, 20, 24, 40. Of these, we see that

10 = 1 + 3 + 6, 20 = 2 × 10, 40 = 4 × 10,

so that 10,20,40 are faithful. Thus the only numbers which are not faithful are

1, 2, 3, 4, 5, 6, 8, 12, 24.

Their sum is 65.

3. Consider two polynomials P (x) = anxn + an−1x
n−1 + · · · + a1x + a0 and Q(x) = bnxn +

bn−1x
n−1 + · · · + b1x + b0 with integer coefficients such that an − bn is a prime, an−1 = bn−1

and anb0 − a0bn 6= 0. Suppose there exists a rational number r such that P (r) = Q(r) = 0.
Prove that r is an integer.

Solution: Let r = u/v where gcd(u, v) = 1. Then we get

anun + an−1u
n−1v + · · · + a1uvn−1 + a0v

n = 0,

bnun + bn−1u
n−1v + · · · + b1uvn−1 + b0v

n = 0.

Subtraction gives

(an − bn)un + (an−2 − bn−2)u
n−2v2 + · · · + (a1 − b1)uvn−1 + (a0 − b0)v

n = 0,

since an−1 = bn−1. This shows that v divides (an − bn)un and hence it divides an − bn. Since
an − bn is a prime, either v = 1 or v = an − bn. Suppose the latter holds. The relation takes
the form

un + (an−2 − bn−2)u
n−2v + · · · + (a1 − b1)uvn−2 + (a0 − b0)v

n−1 = 0.

(Here we have divided through-out by v.) If n > 1, this forces v
∣∣u, which is impossible since

gcd(v, u) = 1 (v > 1 since it is equal to the prime an−bn). If n = 1, then we get two equations:

a1u + a0v = 0,

b1u + b0v = 0.

This forces a1b0−a0b1 = 0 contradicting anb0−a0bn 6= 0. (Note: The condition anb0−a0bn 6= 0
is extraneous. The condition an−1 = bn−1 forces that for n = 1, we have a0 = b0. Thus we
obtain, after subtraction

(a1 − b1)u = 0.

This implies that u = 0 and hence r = 0 is an integer.)

4. Suppose five of the nine vertices of a regular nine-sided polygon are arbitrarily chosen. Show
that one can select four among these five such that they are the vertices of a trapezium.

Solution 1: Suppose four distinct points P , Q, R, S(in that order on the circle) among these

five are such that P̂Q = R̂S. Then PQRS is an isosceles trapezium, with PS ‖ QR. We use
this in our argument.

• If four of the five points chosen are adjacent, then we are through as observed earlier. (In

this case four points A, B, C, D are such that ÂB = B̂C = ĈD.) See Fig 1.
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• Suppose only three of the vertices are adjacent, say A, B, C(see Fig 2.) Then the remaining
two must be among E, F, G, H . If these two are adjacent vertices, we can pair them with
A, B or B, C to get equal arcs. If they are not adjacent, then they must be either E, G
or F, H or E, H . In the first two cases, we can pair them with A, C to get equal arcs. In
the last case, we observe that ĤA = ĈE and AHEC is an isosceles trapezium.

• Suppose only two among the five are adjacent, say A, B. Then the remaining three are
among D, E, F, G, H . (See Fig 3.) If any two of these are adjacent, we can combine them
with A, B to get equal arcs. If no two among these three vertices are adjacent, then they
must be D, F, H . In this case ĤA = B̂D and AHDB is an isosceles trapezium.

Finally, if we choose 5 among the 9 vertices of a regular nine-sided polygon, then some
two must be adjacent. Thus any choice of 5 among 9 must fall in to one of the above
three possibilities.

Solution 2: Here is another solution used by many students. Suppose you join the vertices
of the nine-sided regular polygon. You get

(
9

2

)
= 36 line segments. All these fall in to 9 sets

of parallel lines. Now using any 5 points, you get
(
5

2

)
= 10 line segments. By pigeon-hole

principle, two of these must be parallel. But, these parallel lines determine a trapezium.

5. Let ABCD be a quadrilateral inscribed in a circle Γ. Let E, F , G, H be the midpoints of the
arcs AB, BC, CD, DA of the circle Γ. Suppose AC · BD = EG · FH . Prove that AC, BD,
EG, FH are concurrent.

Solution:
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Let R be the radius of the circle Γ. Observe that

∠EDF =
1

2
∠D. Hence EF = 2R sin

D

2
. Sim-

ilarly, HG = 2R sin
B

2
. But ∠B = 180◦ − ∠D.

Thus HG = 2R cos
D

2
. We hence get

EF ·GH = 4R2 sin
D

2
cos

D

2
= 2R2 sin D = R·AC.

Similarly, we obtain EH · FG = R · BD.

Therefore
R(AC + BD) = EF · GH + EH · FG = EG · FH,

by Ptolemy’s theorem. By the given hypothesis, this gives R(AC + BD) = AC · BD. Thus

AC · BD = R(AC + BD) ≥ 2R
√

AC · BD,

using AM-GM inequality. This implies that AC · BD ≥ 4R2. But AC and BD are the
chords of Γ, so that AC ≤ 2R and BD ≤ 2R. We obtain AC · BD ≤ 4R2. It follows that
AC · BD = 4R2, implying that AC = BD = 2R. Thus AC and BD are two diameters of Γ.
Using EG ·FH = AC ·BD, we conclude that EG and FH are also two diameters of Γ. Hence
AC, BD, EG and FH all pass through the centre of Γ.
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6. Find all functions f : R → R such that

f(x + y)f(x − y) =
(
f(x) + f(y)

)2 − 4x2f(y), (1)

for all x, y ∈ R, where R denotes the set of all real numbers.

Solution 1.: Put x = y = 0; we get f(0)2 = 4f(0)2 and hence f(0) = 0.

Put x = y: we get 4f(x)2 − 4x2f(x) = 0 for all x. Hence for each x, either f(x) = 0 or
f(x) = x2.

Suppose f(x) 6≡ 0. Then we can find x0 6= 0 such that f(x0) 6= 0. Then f(x0) = x2

0
6= 0.

Assume that there exists some y0 6= 0 such that f(y0) = 0. Then

f(x0 + y0)f(x0 − y0) = f(x0)
2.

Now f(x0 + y0)f(x0 − y0) = 0 or f(x0 + y0)f(x0 − y0) = (x0 + y0)
2(x0 − y0)

2. If f(x0 +
y0)f(x0 − y0) = 0, then f(x0) = 0, a contradiction. Hence it must be the latter so that

(x2

0 − y2

0)
2 = x4

0.

This reduces to y2

0

(
y2

0
− 2x2

0
) = 0. Since y0 6= 0, we get y0 = ±

√
2x0.

Suppose y0 =
√

2x0. Put x =
√

2x0 and y = x0 in (1); we get

f
(
(
√

2 + 1)x0

)
f
(
(
√

2 − 1)x0

)
=

(
f(
√

2x0) + f(x0)
)2 − 4

(
2x2

0

)
f(x0).

But f(
√

2x0) = f(y0) = 0. Thus we get

f
(
(
√

2 + 1)x0

)
f
(
(
√

2 − 1)x0

)
= f(x0)

2 − 8x2

0
f(x0)

= x4

0
− 8x4

0
= −7x4

0
.

Now if LHS is equal to 0, we get x0 = 0, a contradiction. Otherwise LHS is equal to (
√

2 +
1)2(

√
2−1)2x4

0 which reduces to x4

0. We obtain x4

0 = −7x4

0 and this forces again x0 = 0. Hence
there is no y 6= 0 such that f(y) = 0. We conclude that f(x) = x2 for all x.

Thus there are two solutions: f(x) = 0 for all x or f(x) = x2, for all x. It is easy to verify
that both these satisfy the functional equation.

Solution 2: As earlier, we get f(0) = 0. Putting x = 0, we will also get

f(y)
(
f(y) − f(−y)

)
= 0.

As earlier, we may conclude that either f(y) = 0 or f(y) = f(−y) for each y ∈ R. Replacing
y by −y, we may also conclude that f(−y)

(
f(−y)− f(y)

)
= 0. If f(y) = 0 and f(−y) 6= 0 for

some y, then we must have f(−y) = f(y) = 0, a contradiction. Hence either f(y) = f(−y) = 0
or f(y) = f(−y) for each y. This forces f is an even function.

Taking y = 1 in (1), we get

f(x + 1)f(x − 1) = (f(x) + f(1))2 − 4x2f(1).

Replacing y by x and x by 1, you also get

f(1 + x)f(1 − x) = (f(1) + f(x))2 − 4f(x).

Comparing these two using the even nature of f , we get f(x) = cx2, where c = f(1). Putting
x = y = 1 in (1), you get 4c2 − 4c = 0. Hence c = 0 or 1. We get f(x) = 0 for all x or
f(x) = x2 for all x.
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