
INMO-2010 Problems and Solutions

1. Let ABC be a triangle with circum-circle Γ. Let M be a point in the interior of triangle
ABC which is also on the bisector of ∠A. Let AM , BM , CM meet Γ in A1, B1, C1

respectively. Suppose P is the point of intersection of A1C1 with AB; and Q is the point
of intersection of A1B1 with AC. Prove that PQ is parallel to BC.

Solution: Let A = 2α. Then ∠A1AC = ∠BAA1 = α. Thus

∠A1B1C = α = ∠BB1A1 = ∠A1C1C = ∠BC1A1.

We also have ∠B1CQ = ∠AA1B1 = β, say. It follows that triangles MA1B1 and QCB1

are similar and hence
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Similarly, triangles ACM and C1A1M are similar and we get
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=
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C1M
.

Using the point P , we get similar ratios:
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Thus,
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,

and
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However, triangles C1BM and B1CM are similar, which gives
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C1B
=

MB1

MC1

.



Putting this in the last expression, we get

AC

AB
=

QC

PB
.

We conclude that PQ is parallel to BC.

2. Find all natural numbers n > 1 such that n2
does not divide (n − 2)!.

Solution: Suppose n = pqr, where p < q are primes and r > 1. Then p ≥ 2, q ≥ 3 and
r ≥ 2, not necessarily a prime. Thus we have

n − 2 ≥ n − p = pqr − p ≥ 5p > p,

n − 2 ≥ n − q = q(pr − 1) ≥ 3q > q,

n − 2 ≥ n − pr = pr(q − 1) ≥ 2pr > pr,

n − 2 ≥ n − qr = qr(p − 1) ≥ qr.

Observe that p, q, pr, qr are all distinct. Hence their product divides (n − 2)!. Thus
n2 = p2q2r2 divides (n − 2)! in this case. We conclude that either n = pq where p, q are
distinct primes or n = pk for some prime p.

Case 1. Suppose n = pq for some primes p, q, where 2 < p < q. Then p ≥ 3 and q ≥ 5.
In this case

n − 2 > n − p = p(q − 1) ≥ 4p,

n − 2 > n − q = q(p − 1) ≥ 2q.

Thus p, q, 2p, 2q are all distinct numbers in the set {1, 2, 3, . . . , n − 2}. We see that
n2 = p2q2 divides (n − 2)!. We conclude that n = 2q for some prime q ≥ 3. Note that
n − 2 = 2q − 2 < 2q in this case so that n2 does not divide (n − 2)!.

Case 2. Suppose n = pk for some prime p. We observe that p, 2p, 3p, . . . (pk−1 − 1)p all
lie in the set {1, 2, 3, . . . , n− 2}. If pk−1 − 1 ≥ 2k, then there are at least 2k multiples of
p in the set {1, 2, 3, . . . , n − 2}. Hence n2 = p2k divides (n − 2)!. Thus pk−1 − 1 < 2k.

If k ≥ 5, then pk−1 − 1 ≥ 2k−1 − 1 ≥ 2k, which may be proved by an easy induction.
Hence k ≤ 4. If k = 1, we get n = p, a prime. If k = 2, then p − 1 < 4 so that p = 2
or 3; we get n = 22 = 4 or n = 32 = 9. For k = 3, we have p2 − 1 < 6 giving p = 2;
n = 23 = 8 in this case. Finally, k = 4 gives p3 − 1 < 8. Again p = 2 and n = 24 = 16.
However n2 = 28 divides 14! and hence is not a solution.

Thus n = p, 2p for some prime p or n = 8, 9. It is easy to verify that these satisfy the
conditions of the problem.

3. Find all non-zero real numbers x, y, z which satisfy the system of equations:

(x2 + xy + y2)(y2 + yz + z2)(z2 + zx + x2) = xyz,

(x4 + x2y2 + y4)(y4 + y2z2 + z4)(z4 + z2x2 + x4) = x3y3z3.

Solution: Since xyz 6= 0, We can divide the second relation by the first. Observe that

x4 + x2y2 + y4 = (x2 + xy + y2)(x2 − xy + y2),

holds for any x, y. Thus we get

(x2 − xy + y2)(y2 − yz + z2)(z2 − zx + x2) = x2y2z2.



However, for any real numbers x, y, we have

x2 − xy + y2 ≥ |xy|.

Since x2y2z2 = |xy| |yz| |zx|, we get

|xy| |yz| |zx| = (x2 − xy + y2)(y2 − yz + z2)(z2 − zx + x2) ≥ |xy| |yz| |zx|.

This is possible only if

x2 − xy + y2 = |xy|, y2 − yz + z2 = |yz|, z2 − zx + x2 = |zx|,

hold simultaneously. However |xy| = ±xy. If x2−xy+y2 = −xy, then x2 +y2 = 0 giving
x = y = 0. Since we are looking for nonzero x, y, z, we conclude that x2 − xy + y2 = xy
which is same as x = y. Using the other two relations, we also get y = z and z = x. The
first equation now gives 27x6 = x3. This gives x3 = 1/27(since x 6= 0), or x = 1/3. We
thus have x = y = z = 1/3. These also satisfy the second relation, as may be verified.

4. How many 6-tuples (a1, a2, a3, a4, a5, a6) are there such that each of a1, a2, a3, a4, a5, a6

is from the set {1, 2, 3, 4} and the six expressions

a2
j − ajaj+1 + a2

j+1

for j = 1, 2, 3, 4, 5, 6(where a7 is to be taken as a1) are all equal to one another?

Solution: Without loss of generality, we may assume that a1 is the largest among
a1, a2, a3, a4, a5, a6. Consider the relation

a2
1 − a1a2 + a2

2 = a2
2 − a2a3 + a2

3.

This leads to
(a1 − a3)(a1 + a3 − a2) = 0.

Observe that a1 ≥ a2 and a3 > 0 together imply that the second factor on the left side
is positive. Thus a1 = a3 = max{a1, a2, a3, a4, a5, a6}. Using this and the relation

a2
3 − a3a4 + a2

4 = a2
4 − a4a5 + a2

5,

we conclude that a3 = a5 as above. Thus we have

a1 = a3 = a5 = max{a1, a2, a3, a4, a5, a6}.

Let us consider the other relations. Using

a2
2 − a2a3 + a2

3 = a2
3 − a3a4 + a2

4,

we get a2 = a4 or a2 + a4 = a3 = a1. Similarly, two more relations give either a4 = a6

or a4 + a6 = a5 = a1; and either a6 = a2 or a6 + a2 = a1. Let us give values to a1 and
count the number of six-tuples in each case.

(A) Suppose a1 = 1. In this case all aj ’s are equal and we get only one six-tuple
(1, 1, 1, 1, 1, 1).

(B) If a1 = 2, we have a3 = a5 = 2. We observe that a2 = a4 = a6 = 1 or a2 = a4 =
a6 = 2. We get two more six-tuples: (2, 1, 2, 1, 2, 1), (2, 2, 2, 2, 2, 2).

(C) Taking a1 = 3, we see that a3 = a5 = 3. In this case we get nine possibilities for
(a2, a4, a6);

(1, 1, 1), (2, 2, 2), (3, 3, 3), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1).



(D) In the case a1 = 4, we have a3 = a5 = 4 and

(a2, a4, a6) = (2, 2, 2), (4, 4, 4), (1, 1, 1), (3, 3, 3),

(1, 1, 3), (1, 3, 1), (3, 1, 1), (1, 3, 3), (3, 1, 3), (3, 3, 1).

Thus we get 1 + 2 + 9 + 10 = 22 solutions. Since (a1, a3, a5) and (a2, a4, a6) may be
interchanged, we get 22 more six-tuples. However there are 4 common among these,
namely, (1, 1, 1, 1, 1, 1), (2, 2, 2, 2, 2, 2), (3, 3, 3, 3, 3, 3) and (4, 4, 4, 4, 4, 4). Hence the total
number of six-tuples is 22 + 22 − 4 = 40.

5. Let ABC be an acute-angled triangle with altitude AK. Let H be its ortho-centre and O
be its circum-centre. Suppose KOH is an acute-angled triangle and P its circum-centre.
Let Q be the reflection of P in the line HO. Show that Q lies on the line joining the
mid-points of AB and AC.

Solution: Let D be the mid-point of BC; M that of HK; and T that of OH. Then
PM is perpendicular to HK and PT is perpendicular to OH. Since Q is the reflection
of P in HO, we observe that P, T,Q are collinear, and PT = TQ. Let QL, TN and OS
be the perpendiculars drawn respectively from Q, T and O on to the altitude AK.(See
the figure.)
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We have LN = NM , since T is the mid-point of QP ; HN = NS, since T is the mid-point
of OH; and HM = MK, as P is the circum-centre of KHO. We obtain

LH + HN = LN = NM = NS + SM,

which gives LH = SM . We know that AH = 2OD. Thus

AL = AH − LH = 2OD − LH = 2SK − SM = SK + (SK − SM) = SK + MK

= SK + HM = SK + HS + SM = SK + HS + LH = SK + LS = LK.

This shows that L is the mid-point of AK and hence lies on the line joining the midpoints
of AB and AC. We observe that the line joining the mid-points of AB and AC is also
perpendicular to AK. Since QL is perpendicular to AK, we conclude that Q also lies on
the line joining the mid-points of AB and AC.



Remark: It may happen that H is above L as in the
adjoining figure, but the result remains true here as
well. We have HN = NS, LN = NM , and HM =
MK as earlier. Thus HN = HL + LN and NS =
SM + NM give HL = SM . Now AL = AH + HL =
2OD + SM = 2SK + SM = SK + (SK + SM) =
SK +MK = SK +HM = SK +HL+LM = SK +
SM + LM = LK. The conclusion that Q lies on the
line joining the mid-points of AB and AC follows as
earlier.
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6. Define a sequence 〈an〉n≥0 by a0 = 0, a1 = 1 and

an = 2an−1 + an−2,

for n ≥ 2.

(a) For every m > 0 and 0 ≤ j ≤ m, prove that 2am divides am+j + (−1)jam−j .

(b) Suppose 2k divides n for some natural numbers n and k. Prove that 2k divides an.

Solution:

(a) Consider f(j) = am+j + (−1)jam−j , 0 ≤ j ≤ m, where m is a natural number. We
observe that f(0) = 2am is divisible by 2am. Similarly,

f(1) = am+1 − am−1 = 2am

is also divisible by 2am. Assume that 2am divides f(j) for all 0 ≤ j < l, where
l ≤ m. We prove that 2am divides f(l). Observe

f(l − 1) = am+l−1 + (−1)l−1am−l+1,

f(l − 2) = am+l−2 + (−1)l−2am−l+2.

Thus we have

am+l = 2am+l−1 + am+l−2

= 2f(l − 1) − 2(−1)l−1am−l+1 + f(l − 2) − (−1)l−2am−l+2

= 2f(l − 1) + f(l − 2) + (−1)l−1
(

am−l+2 − 2am−l+1

)

= 2f(l − 1) + f(l − 2) + (−1)l−1am−l.

This gives
f(l) = 2f(l − 1) + f(l − 2).

By induction hypothesis 2am divides f(l− 1) and f(l− 2). Hence 2am divides f(l).
We conclude that 2am divides f(j) for 0 ≤ j ≤ m.

(b) We see that f(m) = a2m. Hence 2am divides a2m for all natural numbers m. Let
n = 2kl for some l ≥ 1. Taking m = 2k−1l, we see that 2am divides an. Using an
easy induction , we conclude that 2kal divides an. In particular 2k divides an.


