INMO 2004 - Solutions

1. Consider a convex quadrilateral ABCD, in which K, L, M, N are the midpoints of the sides AB,
BC, CD, DA respectively. Suppose

(a) BD bisects KM at Q;
(b) QA=QB =QC = Q@QD; and
(c) LK/LM = CD/CB.

Prove that ABCD is a square.

Fig. 1.

Solution:

Observe that KLM N is a paralellogram, ) is the midpoint of M K and hence NL also passes
through @. Let T be the point of intersection of AC and BD; and let S be the point of intersection
of BD and M N.

Consider the triangle M NK. Note that SQ is parallel to NK and @ is the midpoint of M K.
Hence S is the mid-point of M N. Since M N is parallel to AC, it follows that T is the mid-point
of AC. Now @ is the circumcentre of AABC and the median BT passes through ). Here there
are two possibilities:

(i) ABC is a right triangle with ZABC = 90° and T = @; and
(ii) T # @ in which case BT is perpendicular to AC.

Suppose ZABC = 90° and T = @. Observe that @ is the circumcentre of the triangle DC'B and
hence ZDCB = 90°. Similarly ZDAB = 90°. It follows that ZADC = 90°. and ABCD is a
rectangle. This implies that K LM N is a rhombus. Hence LK /LM =1 and this gives CD = CB.
Thus ABCD is a square.

In the second case, observe that BD is perpendicular to AC, KL is parallel to AC and LM is
parallel to BD. Hence it follows that M L is perpendicular to LK. Similar reasoning shows that
KLMN is a rectangle.



Using LK/LM = CD/CB, we get that CBD is similar to LM K. In particular, ZLMK =
ZCBD = a say. Since LM is parallel to DB, we also get ZBQK = a. Since KLMN is a cyclic
quadrilateral we also get /LNK = /LMK = a. Using the fact that BD is parallel to NK, we
get ZLQB = /ZLNK = a. Since BD bisects ZCBA, we also have ZKB@ = a. Thus

QK =KB=BL=1LQ
and BL is parallel to QK. This gives QM is parallel to LC and
QM =QL=BL=LC

It follows that QLCM is a parallelogram. But ZLC'M = 90°. Hence ZM QL = 90°. This implies
that KLMN is a square. Also observe that ZLQK = 90° and hence ZCBA = ZLQK = 90°.
This gives ZCDA = 90° and hence ABCD is a rectangle. Since BA = BC), it follows that ABC'D
is a square.

. Suppose p is a prime greater than 3. Find all pairs of integers (a, b) satisfying the equation

a® + 3ab + 2p(a+b) + p* = 0.

Solution: We write the equation in the form
a® 4 2ap + p* + b(3a + 2p) = 0
Hence .
_ —(a+p)’
3a+2p
is an integer. This shows that 3a + 2p divides (a + p)? and hence also divides (3a + 3p)?. But, we

have
(3a+3p)® = 3a+2p+p)* = (3a+ 2p)* + 2p(3a + 2p) + p°.

It follows that 3a + 2p divides p®. Since p is a prime, the only divisors of p? are +1,4+p and +p?.
Since p > 3, we also have p =3k + 1 or 3k + 2.

Case 1: Suppose p = 3k + 1. Obviously 3a + 2p = 1 is not possible. Infact, we get 1 = 3a + 2p =
3a + 2(3k + 1) = 3a + 6k = —1 which is impossible. On the other hand 3a + 2p = —1 gives
3a=-2p—1=-6k—3=>a=-2k—1landa+p=—-2k—14+3k+1=k.

—(a+p)?
(3k + 2p)
3a = —p which is not possible. Considering 3a + 2p = —p, we get 3a = —3pora=—p=5b=0.
Hence (a,b) = (—3k — 1,0) where p = 3k + 1.

Let us consider 3a + 2p = p?. Hence 3a = p? — 2p = p(p — 2) and neither p nor p — 2 is divisible
by 3. If 3a+ 2p = —p?, then 3a = —p(p+2) => a = —(3k + 1)(k + 1).

Hence a +p = (3k + 1)(—k — 1+ 1) = —(3k + 1)k. This gives b = k?. Again (a,b) = (—(k +
1)(3k + 1), k"’) when p = 3k + 1.
Case 2: Suppose p =3k — 1. If 3a + 2p = 1, then 3a = —6k + 3 or a = —2k + 1. We also get

—(a+p)?  —(-2k+1+3k—1)%
1 N 1 N

Thus b = = k?. Thus (a,b) = (=2k — 1,k?) when p = 3k + 1. Similarly, 3a +2p=p =

b= —k?



and we get the solution (a,b) = (=2k + 1,%k?). On the other hand 3a + 2p = —1 does not have
any solution integral solution for a. Similarly, there is no solution in the case 3a + 2p = p. Taking
3a+ 2p = —p, we get a = —p and hence b = 0. We get the solution (a,b) = (—3k + 1,0). If
3a + 2p = p?, then 3a = p(p — 2) = (3k — 1)(3k — 3) giving a = (3k — 1)(k — 1) and hence
a+p=(3k—1)(1+k—1) = k(3k —1). This gives b = —k? and hence (a,b) = (3k — 1, —k?).
Finally 3a + 2p = —p? does not have any solution.

. If a is a real root of the equation z° — z® + z — 2 = 0, prove that [af] = 3. (For any real number
a, we denote by [a] the greatest integer not exceeding a.)

Solution: Suppose « is a real root of the given equation. Then
a®—ad+a—-2=0. (1)

This gives a® —a® + a — 1 =1 and hence (a — 1)(a* + a® + 1) = 1. Observe that a* +a® +1 >
202 +a® = a*(a+2). If =1 < a < 0, then a +2 > 0, giving a?(a +2) > 0 and hence
(a—1)(a*+a®+1) <0. If a < —1, then a* + a® = a®(a+ 1) > 0 and hence a* + a3 +1 > 0.
This again gives (a — 1)(a* +a® +1) < 0.

The above resoning shows that for a < 0, we have a® —a® + a — 1 < 0 and hence cannot be equal
to 1. We conclude that a real root a of % — 2° + z — 2 = 0 is positive (obviously a # 0).
Now using a® — a® + a — 2 =0, we get

ab =at—a® + 20

The statement [a®] = 3 is equivalent to 3 < a® < 4.

Consider a* — a® 4+ 2a < 4. Since a > 0, this is equivalent to a® — a® + 2a? < 4a. Using the
relation (1), we can write 2a? — a + 2 < 4a or 2a? — 5a + 2 < 0. Treating this as a quadratic, we

get this is equivalent to 2 < a < 2. Now observe that if a > 2 then 1 = (a — 1)(a* +a® +1) > 25
1
which is impossible. If 0 < a < 3 then 1 = (@ — 1)(a* + & + 1) < 0 which again is impossible.

1 . .
We conlude that 5 <a< 2. Similarly a* — a® + 2o > 3 is equivalent to a® — a® +2a® —3a > 0

which is equivalent to 2a? —4a + 2 > 0. But this is 2(a —1)? > 0 which is valid. Hence 3 < a® < 4
and we get [a5] = 3.

. Let R denote the circumradius of a triangle ABC a, b, ¢ its sides BC, CA, AB; and r,, 13, 7 its
exradii opposite A, B, C. If 2R < r,, prove that

(i) a>band a > ¢
(ii) 2R > rp and 2R > r..

Solution: We know that 2R = ;—bAc and r, = ﬁ, where a, b, ¢ are the sides of the triangle ABC,
a+b+c . . -
§=——5 — and A is the area of ABC'. Thus the given condition 2R < r, translates to

2A2
s—a

abe <




Putting s—a=p,s—b=q,s—c=r,wegeta=q+r,b=r+p,c=p+q and the condition now
is
p(p+q)(g+7)(r+p) <247

But Heron’s formula gives, A2 = s(s —a)(s — b)(s — ¢) = pgr(p + ¢+ r). We obtain (p + q)(g +
r)(r + p) < 2¢gr(p + g + r). Expanding and effecting some cancellations, we get

P(g+7) +p(@® +17) < qr(g +7). (x)
Suppose a < b. This implies that ¢ + r < r + p and hence ¢ < p. This implies that ¢*r < p?r and
qr? < pr? giving qr(q +r) < p*r + pr? < p*r + pr? + pPq + pg® = p*(q +r) + p(¢® + r?) which
contradicts (x). Similarly, a < ¢ is also not possible. This proves (i).

Suppose 2R < 7. As above this takes the form
¢ (r+p) +q(r* +p*) <pr(p+r). (%)
Since a > b and a > ¢, we have ¢ > p,r > p. Thus ¢?r > p?r and ¢r? > pr?. Hence
Clr+p)+qr? +p*) > @Pr+ g >pPr+pr =pr(p+7)

which contradicts (*x). Hence 2R > r. Similarly, we can prove that 2R > r.. This proves (ii)

. Let S denote the set of all 6-tuples (a, b, c,d, e, f) of positive integers such that a®+b?+c2+d?+e? =
f2. Consider the set

T = {abedef : (a,b,¢,d;e, f) € S}.
Find the greatest common divisor of all the members of T'.
Solution: We show that the required ged is 24. Consider an element (a,d, c,d,e, f) € S. We have
a>+ b+ +d*+ e = f2

We first observe that not all a, b, ¢, d, e can be odd. Otherwise, we havea? = > =c2=d> =e2 =1
(mod 8) and hence f2 =5 (mod 8), which is impossible because no square can be congruent to 5
modulo 8. Thus at least one of a, b, ¢,d, e is even.

Similarly if none of a, b, ¢, d, e is divisible by 3, then a? = b?> = ¢ = d%2 = €? = 1 (mod 3) and hence

2 = 2 (mod 3) which again is impossible because no square is congruent to 2 modulo 3. Thus 3
divides abcdef.

There are several possibilities for a, b, ¢, d, e.

Case 1: Suppose one of them is even and the other four are odd; say a is even, b, ¢, d, e are odd.
Then b2 + c? + d? + €2 = 4 (mod 8). If a® = 4 (mod 8), then f? = 0 (mod 8) and hence 2|a,4|f
giving 8laf. If a® = 0 (mod 8), then f? = 4 (mod 8) which again gives that 4|a and 2|f so that
8laf. It follows that 8|abedef and hence 24|abedef.

Case 2: Suppose a, b are even and ¢, d, e are odd. Then ¢ +d? + €2 = 3(mod 8). Since a? +b% =0
or 4 modulo 8, it follows that f> = 3 or 7(mod 8) which is impossible. Hence this case does not
arise.

Case 3: If three of a,b, ¢, d, e are even and two odd, then 8|abedef and hence 24|abedef.

Case 4: If four of a,b,c,d, e are even, then again 8|abedef and 24|abedef. Here again for any six
tuple (a,b,c,d,e, f) in S, we observe that 24|abcdef. Since

2 +12 41242243 =42,
We see that (1,1,1,2,3,4)€ S and hence 24 € T'. Thus 24 is the gcd of T'.



6. Prove that the number of 5-tuples of positive integers (a, b, ¢, d, €) satisfying the equation
abede = 5(bede + acde + abde + abee + abed)

is an odd integer.

Solution: We write the equation in the form:

111 1.1 1
a b ¢ d e 5
The number of five tuple (a, b, ¢, d, e) which satisfy the given relation and for which a # b is even,
because for if (a,b,¢,d,e) is a solution, then so is (b,a,c,d, e)which is distinct from (a,b,c,d,e).
Similarly the number of five tuples which satisfy the equation and for which ¢ # d is also even.
Hence it suffices to count only those five tuples (a,b,¢,d,e) for which a = b,c = d. Thus the
equation reduces to
2 2 1 1
+o4+ =2,
a ¢ e
Here again the tuple (a, a, ¢, ¢, €) for which a # ¢ is even because we can associate different solution
(¢, c,a,a,e) to this five tuple. Thus it suffices to consider the equation
4 1 1

a' e 5
and show that the number of pairs (a, e) satisfying this equation is odd.

This reduces to
ae = 20e + 5a

or
(a — 20)(e — 5) = 100.

But observe that

100=1x100=2x50=4x25=5x 20
=10x10=20x5=25%x4=>50x%x2=100 x 1.

Note that no factorisation of 100 as product of two negative numbers yield a positive tuple (a,€).
Hence we get these 9 solutions. This proves that the total number of five tuples (a,b,c,d,e)
satisfying the given equation is odd.




