Solution to INMO-2002 Problems

1. For a convex hexagon ABCDFEF in which each pair of opposite sides is
unequal, consider the following six statements:

(a1) AB is parallel to DE;  (ag) AE = BD;
(b1) BC is parallel to EF;  (by) BF = CE;
(c1) CD is parallel to FA;  (cg) CA= DF.

(a) Show that if all the six statements are true, then the hexagon is
cyclic(i.e., it can be inscribed in a circle).

(b) Prove that, in fact, any five of these six statements also imply that
the hexagon is cyclic.

Solution:

(a) Suppose all the six statements are true. Then ABDE, BCEF, CDF A
are isosceles trapeziums; if K, L, M, P, ), R are the mid-points of AB, BC,
CD, DE, EF, F A respectively, then we see that KP | AB,ED; LQ L
BC,EF and MR 1 CD, FA.

If AD, BE, CF themselves concur at a point O, then OA = OB = OC =
OD = OF = OF. (O is on the perpendicular bisector of each of the sides.)
Hence A, B,C, D, E, F are concyclic and lie on a circle with centre O. Oth-
erwise these lines AD, BE, C'F form a triangle, say XY Z. (See Fig.) Then
KX, MY,QZ, when extended, become the internal angle bisectors of the
triangle XY Z and hence concur at the incentre O' of XY Z. As earlier O’
lies on the perpendicular bisector of each of the sides. Hence O'A = O'B
= 0'C =0'D = O'E = O'F, giving the concyclicity of A,B,C,D,E,F.



(b) Suppose (a1), (a2), (b1), (bz2) are true. Then we see that AD = BE =
CF'. Assume that (c;) is true. Then CD is parallel to AF'. It follows that
triangles YCD and Y F A are similar. This gives

FY YC FY+YC FC
AY YD AY +YD AD

We obtain F'Y = AY and YC =Y D. This forces that triangles CY A and
DYF are congruent. In particular AC = DF so that (cg) is true. The
conclusion follows from (a). Now assume that (c2) is true; i.e., AC = FD.
We have seen that AD = BE = CF. It follows that triangles FDC and
ACD are congruent. In particular ZADC = ZFCD. Similarly, we can
show that /CFA = /DAF. We conclude that CD is parallel to AF

giving (cyp).

=1.

. Determine the least positive value taken by the expression a3+ b%+c3 —3abc
as a, b, c vary over all positive integers. Find also all triples (a, b, ¢) for which
this least value is attained.

Solution: We observe that

Q:a3+b3+03_3abcz%(a+b+0))((a—b)2+(b—c)2+(C_a)Q).

Since we are looking for the least positive value taken by @), it follows that
a,b,c are not all equal. Thusa+b+c>1+1+2=4and (a —b)% + (b—
¢)?+(c—a)? >1+1+0=2 Thus we see that Q > 4. Taking a = 1,
b=1and ¢ = 2, we get Q = 4. Therefore the least value of @ is 4 and this
is achieved only by a +b+c =4 and (a —b)2+ (b—c)2+ (c—a)? = 2. The
triples for which ) = 4 are therefore given by

(a" b, C) = (1’ 1’ 2)’ (1’ 2’ 1)’ (2, 1’ 1)'
. Let z,y be positive reals such that z 4+ y = 2. Prove that
373?/3(-’173 _|_y3) S 2.

Solution: We have from the AM-GM inequality, that

s () =1
Thus we obtain 0 < zy < 1. We write
2y (e +%) = ( v)’(z+) (@ ~ 2y + )
= 3(x—l—y —3wy>
= (wy)3(4—3xy).



Thus we need to prove that
(my)3(4 — 3:1:y) <1.
Putting z = zy, this inequality reduces to
Pa (4 — 3z) <1,

for 0 < z < 1. We can prove this in different ways. We can put the
inequality in the form
3z =422 +1>0.

Here the expression in the LHS factors to (z — 1)?(32* + 2z + 1) and
(3z2 + 2z + 1) is positive since its discriminant D = —8 < 0. Or applying
the AM-GM inequality to the positive reals 4 — 3z, z, z, z, we obtain

4
z3(4—3z) < (W) <1.

. Do there exist 100 lines in the plane, no three of them concurrent, such
that they intersect exactly in 2002 points?

Solution: Any set of 100 lines in the plane can be partitioned into a finite
number of disjoint sets, say A1, Aa, A3, ..., Ag, such that
(i) Any two lines in each A; are parallel to each other, for 1 < j < k
(provided, of course, |A;| > 2);
(ii) for j #(, the lines in A; and A; are not parallel.

If [Aj| = mj, 1 < j <k, then the total number of points of intersection is

given by Z m;my, as no three lines are concurrent. Thus we have to
1<j<i<k
find positive integers m1, mo, ... ,my such that

k
> my =100, Y mjm; = 2002,
j=1
for an affirmative answer to the given question.
We observe that

S = ($ym) -o(S )

7j=1 7j=1
= 100% — 2(2002) = 5996.



Thus we have to choose mq, mo,... ,my such that

k k
> mj =100, Y mj =5996.
i=1 j=1

We observe that [\/5996 ] = T7. So we may take my = 77, so that

k
Y my=23, ) j=2"m}=6T.
i=2
Now we may choose mg = 5, m3 = my =4, mz = mg = - = myg = 1.

Finally, we can take
k=14, (mi,ma,...,mu)=(77,5,4,4,1,1,1,1,1,1,1,1,1,1),
proving the existence of 100 lines with exactly 2002 points of intersection.

. Do there exist three distinct positive real numbers a,b,c such that the
numbers a, b, ¢, b+c—a,c+a—b,a+b—cand a + b+ c form a 7-term
arithmetic progression in some order?

Solution: We show that the answer is NO. Suppose, if possible, let a, b, ¢
be three distinct positive real numbers such that a, b, ¢, b+c—a, c+a—b,
a+b—cand a+ b+ c form a 7-term arithmetic progression in some order.
We may assume that ¢ < b < ¢. Then there are only two cases we need to
check: I)a+b—c<a<c+a—-b<b<c<b+c—a<a+b+cand (II)
a+b—c<a<b<ct+a-b<c<bt+c—a<a+bd+ec

Case I. Suppose the chain of inequalitiecsa+b—c<a<c+a—-b<b<
c<b+4+c—a<a+b+cholds good. let d be the common difference. Thus
we see that

c=a+b+c—2d,b=a+b+c—3d,a=a+ b+ c— 5d.

Adding these, we see that a + b+ ¢ = 5d. But then a = 0 contradicting the
positivity of a.

Case II. Suppose the inequalitiessa +b—c < a <b<c+a—b<c<
b+c—a < a+ b+ care true. Again we see that

c=a+b+c—2d, b=a+b+c—4d, a=a+b+c—5d.

We thus obtain a + b + ¢ = (11/2)d. This gives

1 3 7
a—ﬁd,b—id,C—Ed.



Note that a +b—c =a+b+c—6d = —(1/2)d. However we also get
a+b—c=[(1/2) + (3/2) — (7/2)]d = —(3/2)d. It follows that 3e = e
giving d = 0. But this is impossible.

Thus there are no three distinct positive real numbers a, b, ¢ such that a,
b,c,b+c—a,c+a—b,a+b—cand a+ b+ cform a 7-term arithmetic
progression in some order.

. Suppose the n? numbers 1,2, 3, ... ,n? are arranged to form an n by n array

consisting of n rows and n columns such that the numbers in each row(from
left to right) and each column(from top to bottom) are in increasing order.
Denote by aj; the number in j-th row and k-th column. Suppose b; is the
maximum possible number of entries that can occur as aj;, 1 < 57 < n.
Prove that
n 2
by +by+bg+---b, < g(n —3n+5).

(Example: In the case n = 3, the only numbers which can occur as agy are

4,5 or 6 so that by = 3.)

Solution: Since aj; has to exceed all the numbers in the top left j x j
submatrix (excluding itself), and since there are j2 — 1 entries, we must
have aj; > j2. Similarly, a;; must not exceed eac of the numbers in the
bottom right (n — j + 1) X (n — j + 1) submatrix (other than itself) and
there are (n — j + 1)2 — 1 such entries giving a;; <n? — (n —j +1)? + 1.
Thus we see that

ajje {j27j2+1,j2+2,... ,n2—(n_‘7+1)2+1}

The number of elements in this set is n2 — (n —j+1)? — 52+ 2. This implies
that

bj<n?—(n—j+1)2—2+2=2n+2)j — 25— (2n —1).

It follows that

Zn:bj < (2n+2)§:j—22n:j2—n(2n—1)

j=1 j=1
S e -

which is the required bound.




