CRMO-2015 questions and solutions

1. Let ABC be a triangle. Let B’ and C’ denote respectively the reflection of B and C in
the internal angle bisector of ZA. Show that the triangles ABC and AB’C’ have the same
incentre.

Solution: Join BB’ and CC’. Let the internal angle
bisector ¢ of /A meet BB’ in E and CC’ in F. Since
B’ is the reflection of B in ¢, we observe that BB’ 1 /¢
and BE = EB’. Hence B’ lies on AC. Similarly, C’ lies
on the line AB.

Let D be the point of intersection of BC and B'C’.
Observe that BB’ || C'C. Moreover the triangles ABC
is congruent to AB’C": this follows from the observation
that AB = AB’ and AC = AC’ and the included angle
/A is common. Hence BC' = B'C so that C'CB’'B is
an isosceles trapezium. This means that the intesection
point D of its diagonal lies on the perpendicular bisector
of its parallel sides. Thus ¢ passes through D. We also
observe that CD = C'D.

Let I be the incentre of AABC. This means that CT bisects ZC. Hence AI/ID = AC/CD.
But AC = AC’" and CD = C’'D. Hence we also get that AI/ID = AC'/C'D. This implies
that C'I bisects ZAC'B’. Therefore the two angle bisectors of AAC’B’ meet at I. This
shows that I is also the incentre of AAC'B’.

2. Let P(z) = 22 4+ ax + b be a quadratic polynomial with real coefficients. Suppose there are
real numbers s # t such that P(s) = ¢t and P(t) = s. Prove that b — st is a root of the
equation 2% + ax 4+ b — st = 0.

Solution: We have

$+as+b = t,
2+at+b = s.

This gives
(2 =t?) +a(s—t) = (t—s).

Since s # t, we obtain s +t + a = —1. Adding the equations, we obtain
s+t fa(s+t)+2b=(s+1).

Therefore
(s +1)% —2st +a(s+1t)+2b= (s +1).

Using s +t¢ = —(1 + a), we obtain
(1+a)*>—2st —a(l+a)+2b=—1—a.

Simplification gives st = 1+a-+b = P(1). This shows that x = 1is aroot of x?+ax+b—st = 0.
Since the product of roots is b — st, the other root is b — st.



3. Find all integers a, b, ¢ such that
a?=bc+1, b>=ca+l.

Solution: Suppose a = b. Then we get one equation: a? = ac + 1. This reduces to

a(a — c¢) = 1. Therefore a = 1, a —¢ = 1; and ¢« = —1, a — ¢ = —1. Thus we get
(a,b,¢) =(1,1,0) and (—1,—1,0).

If a # b, subtracting the second relation from the first we get
a® —b* =c(b—a).
This gives a + b = —c. Substituting this in the first equation, we get
a®> =b(—a —b) + 1.
Thus a? 4 b? + ab = 1. Multiplication by 2 gives
(a+b)2+a®+b>=2.

Thus (a,b) = (1,-1), (-1,1), (1,0), (—1,0), (0,1), (0,—1). We get respectively ¢ =
0,0,—1,1,—1,1. Thus we get the triples:

(a,b,c) =(1,1,0),(-1,-1,0),(1,-1,0),(-1,1,0),(1,0,-1),(-1,0,1),(0,1,—-1), (0, =1, 1).

4. Suppose 32 objects are placed along a circle at equal distances. In how many ways can 3
objects be chosen from among them so that no two of the three chosen objects are adjacent
nor diametrically opposite?

Solution: One can choose 3 objects out of 32 objects in (332) ways. Among these choices
all would be together in 32 cases; exactly two will be together in 32 x 28 cases. Thus three
objects can be chosen such that no two adjacent in (332) — 32— (32 x 28) ways. Among these,
furthrer, two objects will be diametrically opposite in 16 ways and the third would be on
either semicircle in a non adjacent portion in 32 — 6 = 26 ways. Thus required number is

2
(33> — 32— (32 x 28) — (16 x 26) = 3616.

5. Two circles " and X in the plane intersect at two distinct points A and B, and the centre
of ¥ lies on I'. Let points C and D be on I and X, respectively, such that C, B and D are
collinear. Let point £ on X be such that DE is parallel to AC. Show that AE = AB.

Solution: If O is the centre of ¥, then we have A
1 1 \
LAEB = 5/AOB = 5 (180° ~ LACB) /
1 1 1

= -/FEDB = —(180° — ZFEAB) =90° — -/ZEAB. E
. 5 (180 ) =90° — AN \
———

D B C

But we know that ZAEB + Z/EAB + /EBA = 180°.

Therefore
1
/EBA=180° — ZAEB — /ZFEAB = 180° — 90° + §4EAB — /FEAB = 90° — %ZEAB.

This shows that ZAEB = ZEBA and hence AE = AB.



6. Find all real numbers a such that 4 < a < 5 and a(a —3{a}) is an integer. (Here {a} denotes
the fractional part of a. For example {1.5} = 0.5; {—3.4} = 0.6.)

Solution: Let a =4 + f, where 0 < f < 1. We are given that (4 + f)(4 — 2f) is an integer.
This implies that 2f2 4+ 4f is an integer. Since 0 < f < 1, we have 0 < 2f2 + 4f < 6.
Therefore 22 +4f can take 1,2, 3,4 or 5. Equating 2f2 + 4f to each one of them and using
f >0, we get

C=24V6 —24+V8 —24+V10 —2+V12 —2+V14

! 2 2 2 ’ 2 ’ 2

Therefore a takes the values:

I D) i
3+§,3+?,3+ \T’“ C,3+ C

a =

00 -



