
Solutions to RMO-2014 problems

1. Let ABC be a triangle and let AD be the
perpendicular from A on to BC. Let K,L,M
be points on AD such that AK = KL =
LM = MD. If the sum of the areas of
the shaded regions is equal to the sum of
the areas of the unshaded regions, prove that
BD = DC.

Solution: let BD = 4x, DC = 4y and AD = 4h. Then the sum of the areas of the
shaded regions is

1

2
h
(
x + (y + 2y) + (2x + 3x) + (3y + 4y)

)
=

h(6x + 10y)

2
.

The sum of the areas of the unshaded regions is

1

2
h
(
y + (x + 2x) + (2y + 3y) + (3x + 4x)

)
=

h(10x + 6y)

2
.

Therefore the given condition implies that

6x + 10y = 10x + 6y.

This gives x = y. Hence BD = DC.

2. Let a1, a2, . . . , a2n be an arithmetic progression of positive real numbers with com-
mon difference d. Let
(i) a21 + a23 + · · ·+ a22n−1 = x, (ii) a22 + a24 + · · ·+ a22n = y, and
(iii) an + an+1 = z.

Express d in terms of x, y, z, n.

Solution: Observe that

y − x = (a22 − a21) + (a24 − a23) + · · ·+ (a22n − a22n−1).

The general difference is

a22k − a22k−1 =
(
a2k + a2k−1

)
d =

(
2a1 +

(
(2k − 1) + (2k − 2)

)
d
)
d.

Therefore

y − x =
(
2na1 + (1 + 2 + 3 + · · · (2n− 1))d

)
d = nd

(
2a1 + (2n− 1)d

)
.

We also observe that

z = an + an+1 = 2a1 + (2n− 1)d.

It follows that y − x = ndz. Hence d = (y − x)/nz.



3. Suppose for some positive integers r and s, the digits of 2r is obtained by permuting
the digits of 2s in decimal expansion. Prove that r = s.

Solution: Suppose s ≤ r. If s < r then 2s < 2r. Since the number of digits in 2s

and 2r are the same, we have 2r < 10 × 2s < 2s+4. Thus we have 2s < 2r < 2s+4

which gives r = s + 1 or s + 2 or s + 3. Since 2r is obtained from 2s by permuting
its digits, 2r − 2s is divisible by 9. If r = s + 1, we see that 2r − 2s = 2s and it is
clearly not divisible by 9. Similarly, 2s+2− 2s = 3× 2s and 2s+3− 2s = 7× 2s and
none of these is divisible by 9. We conclude that s < r is not possible. Hence r = s.

4. Is it possible to write the numbers
17, 18, 19, . . . , 32 in a 4 × 4 grid of unit
squares, with one number in each square,
such that the product of the numbers in each
2×2 sub-grids AMRG, GRND, MBHR and
RHCN is divisible by 16?

Solution: NO! If the product in each 2× 2 sub-square is divisible by 16, then the
product of all the numbers is divisible by 16× 16× 16× 16 = 216. But it is easy to
see that

17× 18× 19× · · · × 32 = 215k,

where k is an odd number. Hence the product of all the numbers in the grid is not
divisible by 216.

5. Let ABC be an acute-angled triangle and let H be its ortho-centre. For any point
P on the circum-circle of triangle ABC, let Q be the point of intersection of the line
BH with the line AP . Show that there is a unique point X on the circum-circle of
ABC such that for every point P 6= A,B, the circum-circle of HQP pass through
X.

Solution: We consider two possibilities: Q lying between A and P ; and P lying
between A and Q. (See the figures.)

In the first case, we observe that

∠HXC = ∠HXP + ∠PXC = ∠AQB + ∠PAC,

since Q,H,X, P are concyclic and P,A,X,C are also concyclic. Thus we get

∠HXC = ∠AQE + ∠QAE = 90◦

because BE ⊥ AC.
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In the second case, we have

∠HXC = ∠HXP + ∠PXC = ∠HQP + ∠PAC;

the first follows from H,X,Q, P are concyclic; the second follows from the concyclic-
ity of A,X,C, P . Again BE ⊥ AC shows that ∠HXC = 90◦.

Thus for any point P 6= A,B on the circumcircle of ABC, the point X of intersection
of the circumcircles of ABC and HPQ is such that ∠HXC = 90◦. This means X
is precisely the point of intersection of the circumcircles of HEC and ABC, which
is independent of P .

6. Let x1, x2, . . . , x2014 be positive real numbers such that
∑2014

j=1 xj = 1. Determine
with proof the smallest constant K such that

K
2014∑
j=1

x2j
1− xj

≥ 1.

Solution: Let us take the general case: {x1, x2, . . . , xn} are positive real numbers
such that

∑n
k=1 xk = 1. Then

n∑
k=1

x2k
1− xk

=
n∑

k=1

x2k − 1

1− xk
+

n∑
k=1

1

1− xk
=

n∑
k=1

(−1− xk) +
n∑

k=1

1

1− xk
.

Now the first sum is −n − 1. We can estimate the second sum using AM-HM
inequality:

n∑
k=1

1

1− xk
≥ n2∑n

k=1(1− xk)
=

n2

n− 1
.

Thus we obtain
n∑

k=1

x2k
1− xk

≥ −(1 + n) +
n2

n− 1
=

1

n− 1
.

Here equality holds if and only if all xj ’s are equal. Thus we get the smallest
constant K such that

K

2014∑
j=1

x2j
1− xj

≥ 1

to be 2014− 1 = 2013.
———-0———-
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